Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21441, Saudi Arabia.
Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62511, Egypt.
Plant Physiol Biochem. 2023 Sep;202:107943. doi: 10.1016/j.plaphy.2023.107943. Epub 2023 Aug 10.
The increases in titanium dioxide nanoparticles (TiO-NPs) released into the environment have raised concerns about their toxicity. However, their phytotoxic impact on plants is not well studied. Therefore, this study aimed at a deeper understanding of the TiO-NPs phytotoxic impact on barley (Hordeum vulgare) growth and stress defense. We also hypothesized that soil inoculation with bioactive Rhodospirillum sp. JY3 strain can be applied as a biological fertilizer to alleviate TiO-NPs phytotoxicity. At TiO-NPs phytotoxicity level, photosynthesis was significantly retarded (∼50% reduction) in TiO-NPs treated-barley plants which accordingly affect the biomass of barley plants. This retardation was accompanied by a remarkable induction of oxidative damage (HO, lipid peroxidation) with a concomitant reduction in the antioxidant defense metabolism. At a glance, Rhodospirillum sp. JY3 ameliorated the reduction in growth by enhancing the photosynthetic efficiency in contaminated barley plants. Moreover, Rhodospirillum sp. JY3 inoculation reduced the oxidative damage induced by TiO-NPs via quenching HO production and lipid peroxidation. Regarding the antioxidant defense arsenal, Rhodospirillum sp. JY3 enhanced both enzymatic (e.g. peroxidase (POX), catalase (CAT), superoxide dismutase (SOD), …. etc.) and non-enzymatic (glutathione (GSH), ascorbate (ASC), polyphenols, flavonoids, tocopherols) antioxidants in shoots and to a greater extent roots of barley plants. Moreover, the inoculation significantly enhanced the heavy metal-detoxifying metabolites (eg. phytochelatins, glutaredoxin, thioredoxin, peroxiredoxin) as well as metal-detoxifying enzymes in barley shoots and more apparently in roots of TiO-NPs stressed plants. Furthermore, there was an organ-specific response to TiO-NPs and Rhodospirillum sp. JY3. To this end, this study shed light, for the first time, on the molecular bases underlie TiO-NPs stress mitigating impact of Rhodospirillum sp. JY3 and it introduced Rhodospirillum sp. JY3 as a promising eco-friendly tool in managing environmental risks to maintain agricultural sustainability.
二氧化钛纳米颗粒(TiO-NPs)释放到环境中会增加,这引起了人们对其毒性的关注。然而,它们对植物的植物毒性影响还没有得到很好的研究。因此,本研究旨在更深入地了解 TiO-NPs 对大麦(Hordeum vulgare)生长和应激防御的植物毒性影响。我们还假设,将具有生物活性的 Rhodospirillum sp. JY3 菌株接种到土壤中可以作为生物肥料来减轻 TiO-NPs 的植物毒性。在 TiO-NPs 植物毒性水平下,光合作用在 TiO-NPs 处理的大麦植物中显著延迟(约 50%的减少),从而影响大麦植物的生物量。这种延迟伴随着氧化损伤(HO、脂质过氧化)的显著诱导,同时抗氧化防御代谢物减少。乍一看,Rhodospirillum sp. JY3 通过增强受污染大麦植物的光合作用效率来改善生长减少。此外,Rhodospirillum sp. JY3 接种减少了 TiO-NPs 诱导的氧化损伤,通过淬灭 HO 生成和脂质过氧化。关于抗氧化防御武器库,Rhodospirillum sp. JY3 增强了 shoot 中的酶(如过氧化物酶(POX)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)等)和非酶(谷胱甘肽(GSH)、抗坏血酸(ASC)、类黄酮、生育酚)抗氧化剂,在大麦植物的根中更为明显。此外,接种显著增强了重金属解毒代谢物(如植物螯合肽、谷胱甘肽还原酶、硫氧还蛋白、过氧化物酶)以及 TiO-NPs 胁迫植物 shoot 和更明显的根中的金属解毒酶。此外,TiO-NPs 和 Rhodospirillum sp. JY3 存在器官特异性反应。为此,本研究首次阐明了 Rhodospirillum sp. JY3 减轻 TiO-NPs 胁迫的分子基础,并将 Rhodospirillum sp. JY3 作为一种有前途的环保工具引入,以管理环境风险,维持农业可持续性。