Department of Geology, Faculty of Geology, University of Oviedo, 33005 Oviedo, Spain.
Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; BioFab i3D-Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain.
Biomater Adv. 2023 Nov;154:213605. doi: 10.1016/j.bioadv.2023.213605. Epub 2023 Aug 26.
Hybrid biomimetic materials aim to replicate the organic-inorganic constructs of mineralized tissues. During eggshell formation, the outer surface of the eggshell membrane (ESM) promotes calcium carbonate nucleation, while the inner one prevents mineralization toward the egg white and yolk. In the current study, the outer surface of the ESM acted as a heteronucleant in calcium phosphate precipitation by the vapor diffusion sitting drop method, while the inner one remained unmineralized. The aim was to fabricate a 2D biomaterial with dual functions, osteoinductive on one side and protective against cell invasion on the other side. The microstructural, physicochemical, morphological, and mechanical properties of the mineralized ESM were characterized by XRD, TGA, XPS, FTIR/Raman, HR-SEM, and mechanical testing techniques. The cytocompatibility and osteoinductive ability were assessed by biological assays of cell viability, proliferation, and osteogenic differentiation on human mesenchymal stromal cells (hMSCs). Results indicate that the outer surface of the ESM induces the heterogeneous precipitation of carbonate-apatite phase depicting biomimetic features. In addition, the apatite/ESM shows a much higher cytocompatibility than the pristine ESM and promotes the osteogenic differentiation of hMSCs more efficiently. Overall, the apatite/ESM composite exhibits compositional, crystalline, mechanical, and biological properties that resemble those of mineralized tissues, rendering it an approachable and novel material especially useful in guided tissue/bone regeneration.
杂化仿生材料旨在复制矿化组织的有机-无机结构。在蛋壳形成过程中,蛋壳膜(ESM)的外表面促进碳酸钙成核,而内表面则防止向蛋清和蛋黄方向矿化。在本研究中,ESM 的外表面通过蒸汽扩散坐滴法在磷酸钙沉淀中充当异质核,而内表面则保持未矿化。目的是制备一种具有双重功能的 2D 生物材料,一侧具有成骨诱导作用,另一侧具有防止细胞侵袭的保护作用。通过 XRD、TGA、XPS、FTIR/Raman、HR-SEM 和力学测试技术对矿化 ESM 的微观结构、物理化学、形态和机械性能进行了表征。通过对人间充质干细胞(hMSCs)的细胞活力、增殖和成骨分化的生物学测定评估了其细胞相容性和成骨诱导能力。结果表明,ESM 的外表面诱导了具有仿生特征的碳酸盐磷灰石相的异质沉淀。此外,与原始 ESM 相比,磷灰石/ESM 具有更高的细胞相容性,并能更有效地促进 hMSCs 的成骨分化。总体而言,磷灰石/ESM 复合材料具有类似于矿化组织的组成、结晶、机械和生物学特性,使其成为一种易于接近的新型材料,特别适用于引导组织/骨再生。