Suppr超能文献

自然语言处理——识别儿童虐待的监控踏脚石。

Natural Language Processing - A Surveillance Stepping Stone to Identify Child Abuse.

机构信息

Department of Pediatrics (M Shum, A Hsiao, A Asnes, and G Tiyyagura), Yale University School of Medicine, New Haven, Conn.

Department of Pediatrics (M Shum, A Hsiao, A Asnes, and G Tiyyagura), Yale University School of Medicine, New Haven, Conn.

出版信息

Acad Pediatr. 2024 Jan-Feb;24(1):92-96. doi: 10.1016/j.acap.2023.08.015. Epub 2023 Aug 29.

Abstract

OBJECTIVE

We aimed to refine a natural language processing (NLP) algorithm that identified injuries associated with child abuse and identify areas in which integration into a real-time clinical decision support (CDS) tool may improve clinical care.

METHODS

We applied an NLP algorithm in "silent mode" to all emergency department (ED) provider notes between July 2021 and December 2022 (n = 353) at 1 pediatric and 8 general EDs. We refined triggers for the NLP, assessed adherence to clinical guidelines, and evaluated disparities in degree of evaluation by examining associations between demographic variables and abuse evaluation or reporting to child protective services.

RESULTS

Seventy-three cases falsely triggered the NLP, often due to errors in interpreting linguistic context. We identified common false-positive scenarios and refined the algorithm to improve NLP specificity. Adherence to recommended evaluation standards for injuries defined by nationally accepted clinical guidelines was 63%. There were significant demographic differences in evaluation and reporting based on presenting ED type, insurance status, and race and ethnicity.

CONCLUSIONS

Analysis of an NLP algorithm in "silent mode" allowed for refinement of the algorithm and highlighted areas in which real-time CDS may help ED providers identify and pursue appropriate evaluation of injuries associated with child physical abuse.

摘要

目的

我们旨在改进一种自然语言处理(NLP)算法,以识别与儿童虐待相关的伤害,并确定将其整合到实时临床决策支持(CDS)工具中可能改善临床护理的领域。

方法

我们在 2021 年 7 月至 2022 年 12 月期间,在 1 家儿科和 8 家综合急诊科的所有急诊部(ED)医护人员记录中以“静默模式”应用 NLP 算法(n=353)。我们改进了 NLP 的触发因素,评估了对临床指南的遵守情况,并通过检查人口统计学变量与虐待评估或向儿童保护服务机构报告之间的关联,评估评估或报告程度的差异。

结果

73 例病例错误触发了 NLP,这通常是由于对语言环境的解释错误所致。我们确定了常见的假阳性场景,并改进了算法以提高 NLP 的特异性。对符合国家认可的临床指南定义的伤害进行推荐评估标准的遵守率为 63%。根据就诊 ED 类型、保险状况以及种族和民族,在评估和报告方面存在显著的人口统计学差异。

结论

在“静默模式”下分析 NLP 算法,可以改进算法,并突出实时 CDS 可能有助于 ED 提供者识别和进行与儿童身体虐待相关的伤害适当评估的领域。

相似文献

1
Natural Language Processing - A Surveillance Stepping Stone to Identify Child Abuse.
Acad Pediatr. 2024 Jan-Feb;24(1):92-96. doi: 10.1016/j.acap.2023.08.015. Epub 2023 Aug 29.
2
Development and Validation of a Natural Language Processing Tool to Identify Injuries in Infants Associated With Abuse.
Acad Pediatr. 2022 Aug;22(6):981-988. doi: 10.1016/j.acap.2021.11.004. Epub 2021 Nov 12.
3
Initial development of tools to identify child abuse and neglect in pediatric primary care.
BMC Med Inform Decis Mak. 2023 Nov 17;23(1):266. doi: 10.1186/s12911-023-02361-7.
6
A natural language processing and deep learning approach to identify child abuse from pediatric electronic medical records.
PLoS One. 2021 Feb 26;16(2):e0247404. doi: 10.1371/journal.pone.0247404. eCollection 2021.
9
Integration of physical abuse clinical decision support at 2 general emergency departments.
J Am Med Inform Assoc. 2019 Oct 1;26(10):1020-1029. doi: 10.1093/jamia/ocz069.

引用本文的文献

1
Fostering Tomorrow: Uniting Artificial Intelligence and Social Pediatrics for Comprehensive Child Well-being.
Turk Arch Pediatr. 2024 Jul 1;59(4):345-352. doi: 10.5152/TurkArchPediatr.2024.24076.

本文引用的文献

1
Improving Child Abuse Recognition and Management: Moving Forward with Clinical Decision Support.
J Pediatr. 2023 Jan;252:11-13. doi: 10.1016/j.jpeds.2022.08.020. Epub 2022 Aug 17.
2
Clinical Decision Support for Child Abuse: Recommendations from a Consensus Conference.
J Pediatr. 2023 Jan;252:213-218.e5. doi: 10.1016/j.jpeds.2022.06.039. Epub 2022 Jul 9.
3
Validating Use of ICD-10 Diagnosis Codes in Identifying Physical Abuse Among Young Children.
Acad Pediatr. 2023 Mar;23(2):396-401. doi: 10.1016/j.acap.2022.06.011. Epub 2022 Jun 29.
4
Improved Detection of Child Maltreatment with Routine Screening in a Tertiary Care Pediatric Hospital.
J Pediatr. 2022 Apr;243:181-187.e2. doi: 10.1016/j.jpeds.2021.11.073. Epub 2021 Dec 17.
5
Development and Validation of a Natural Language Processing Tool to Identify Injuries in Infants Associated With Abuse.
Acad Pediatr. 2022 Aug;22(6):981-988. doi: 10.1016/j.acap.2021.11.004. Epub 2021 Nov 12.
6
7
Validation of a Clinical Decision Rule to Predict Abuse in Young Children Based on Bruising Characteristics.
JAMA Netw Open. 2021 Apr 1;4(4):e215832. doi: 10.1001/jamanetworkopen.2021.5832.
8
The Use of Experts to Evaluate a Child Abuse Guideline in Community Emergency Departments.
Acad Pediatr. 2021 Apr;21(3):521-528. doi: 10.1016/j.acap.2020.11.001. Epub 2020 Nov 5.
9
Evaluating the alert appropriateness of clinical decision support systems in supporting clinical workflow.
J Biomed Inform. 2020 Jun;106:103453. doi: 10.1016/j.jbi.2020.103453. Epub 2020 May 14.
10
Integration of physical abuse clinical decision support at 2 general emergency departments.
J Am Med Inform Assoc. 2019 Oct 1;26(10):1020-1029. doi: 10.1093/jamia/ocz069.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验