Suppr超能文献

通过在输出层附近执行池化决策来提高准确率。

Enhancing the accuracies by performing pooling decisions adjacent to the output layer.

作者信息

Meir Yuval, Tzach Yarden, Gross Ronit D, Tevet Ofek, Vardi Roni, Kanter Ido

机构信息

Department of Physics, Bar-Ilan University, 52900, Ramat Gan, Israel.

Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, 52900, Ramat Gan, Israel.

出版信息

Sci Rep. 2023 Aug 31;13(1):13385. doi: 10.1038/s41598-023-40566-y.

Abstract

Learning classification tasks of [Formula: see text] inputs typically consist of [Formula: see text]) max-pooling (MP) operators along the entire feedforward deep architecture. Here we show, using the CIFAR-10 database, that pooling decisions adjacent to the last convolutional layer significantly enhance accuracies. In particular, average accuracies of the advanced-VGG with [Formula: see text] layers (A-VGGm) architectures are 0.936, 0.940, 0.954, 0.955, and 0.955 for m = 6, 8, 14, 13, and 16, respectively. The results indicate A-VGG8's accuracy is superior to VGG16's, and that the accuracies of A-VGG13 and A-VGG16 are equal, and comparable to that of Wide-ResNet16. In addition, replacing the three fully connected (FC) layers with one FC layer, A-VGG6 and A-VGG14, or with several linear activation FC layers, yielded similar accuracies. These significantly enhanced accuracies stem from training the most influential input-output routes, in comparison to the inferior routes selected following multiple MP decisions along the deep architecture. In addition, accuracies are sensitive to the order of the non-commutative MP and average pooling operators adjacent to the output layer, varying the number and location of training routes. The results call for the reexamination of previously proposed deep architectures and their accuracies by utilizing the proposed pooling strategy adjacent to the output layer.

摘要

学习[公式:见原文]输入的分类任务通常由沿整个前馈深度架构的[公式:见原文]最大池化(MP)算子组成。在这里,我们使用CIFAR - 10数据库表明,与最后一个卷积层相邻的池化决策显著提高了准确率。具体而言,对于m = 6、8、14、13和16,具有[公式:见原文]层的高级VGG(A - VGGm)架构的平均准确率分别为0.936、0.940、0.954、0.955和0.955。结果表明A - VGG8的准确率优于VGG16,并且A - VGG13和A - VGG16的准确率相等,且与Wide - ResNet16的准确率相当。此外,用一个全连接(FC)层替换A - VGG6和A - VGG14的三个全连接层,或者用几个线性激活的FC层,产生了相似的准确率。与沿着深度架构遵循多个MP决策所选择的较差路径相比,这些显著提高的准确率源于训练最具影响力的输入 - 输出路径。此外,准确率对与输出层相邻的非交换MP和平均池化算子的顺序敏感,这会改变训练路径的数量和位置。结果呼吁通过利用与输出层相邻的提议池化策略重新审视先前提出的深度架构及其准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f8d/10471572/56a7af6e2bab/41598_2023_40566_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验