Suppr超能文献

高效的树突学习作为突触可塑性假说的替代方案。

Efficient dendritic learning as an alternative to synaptic plasticity hypothesis.

机构信息

Department of Physics, Bar-Ilan University, 52900, Ramat-Gan, Israel.

Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, 52900, Ramat-Gan, Israel.

出版信息

Sci Rep. 2022 Apr 28;12(1):6571. doi: 10.1038/s41598-022-10466-8.

Abstract

Synaptic plasticity is a long-lasting core hypothesis of brain learning that suggests local adaptation between two connecting neurons and forms the foundation of machine learning. The main complexity of synaptic plasticity is that synapses and dendrites connect neurons in series and existing experiments cannot pinpoint the significant imprinted adaptation location. We showed efficient backpropagation and Hebbian learning on dendritic trees, inspired by experimental-based evidence, for sub-dendritic adaptation and its nonlinear amplification. It has proven to achieve success rates approaching unity for handwritten digits recognition, indicating realization of deep learning even by a single dendrite or neuron. Additionally, dendritic amplification practically generates an exponential number of input crosses, higher-order interactions, with the number of inputs, which enhance success rates. However, direct implementation of a large number of the cross weights and their exhaustive manipulation independently is beyond existing and anticipated computational power. Hence, a new type of nonlinear adaptive dendritic hardware for imitating dendritic learning and estimating the computational capability of the brain must be built.

摘要

突触可塑性是大脑学习的一个长期存在的核心假设,它表明两个连接神经元之间的局部适应性,并构成机器学习的基础。突触可塑性的主要复杂性在于,突触和树突将神经元串联连接,并且现有实验无法精确定位显著的印迹适应位置。受基于实验的证据启发,我们展示了在树突上进行有效的反向传播和赫布学习,用于亚树突适应及其非线性放大。事实证明,它在手写数字识别方面取得了接近 100%的成功率,这表明即使只有一个树突或神经元也可以实现深度学习。此外,树突放大实际上会产生与输入数量呈指数级增长的输入交叉、高阶相互作用,从而提高成功率。然而,直接实现大量的交叉权重并独立地对其进行详尽的操作超出了现有和预期的计算能力。因此,必须构建一种新型的非线性自适应树突硬件来模拟树突学习并估计大脑的计算能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验