Hong Po-Yu, Lai Chi-Cheng, Tsai Ting, Lin Horng-Chih, George Thomas, Kuo David M T, Li Pei-Wen
Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
Department of Electrical Engineering, National Central University, Chungli, Taiwan.
Sci Rep. 2023 Aug 31;13(1):14333. doi: 10.1038/s41598-023-41582-8.
We reported exciton binding-energy determination using tunneling-current spectroscopy of Germanium (Ge) quantum dot (QD) single-hole transistors (SHTs) operating in the few-hole regime, under 405-1550 nm wavelength (λ) illumination. When the photon energy is smaller than the bandgap energy (1.46 eV) of a 20 nm Ge QD (for instance, λ = 1310 nm and 1550 nm illuminations), there is no change in the peak voltages of tunneling current spectroscopy even when the irradiation power density reaches as high as 10 µW/µm. In contrast, a considerable shift in the first hole-tunneling current peak towards positive V is induced (ΔV ≈ 0.08 V at 0.33 nW/µm and 0.15 V at 1.4 nW/µm) and even additional photocurrent peaks are created at higher positive V values (ΔV ≈ 0.2 V at 10 nW/µm irradiation) by illumination at λ = 850 nm (where the photon energy matches the bandgap energy of the 20 nm Ge QD). These experimental observations were further strengthened when Ge-QD SHTs were illuminated by λ = 405 nm lasers at much lower optical-power conditions. The newly-photogenerated current peaks are attributed to the contribution of exciton, biexciton, and positive trion complexes. Furthermore, the exciton binding energy can be determined by analyzing the tunneling current spectra.
我们报道了在405 - 1550纳米波长(λ)光照下,利用处于少空穴状态的锗(Ge)量子点(QD)单空穴晶体管(SHT)的隧穿电流光谱来测定激子结合能。当光子能量小于20纳米Ge量子点的带隙能量(1.46电子伏特)时(例如,λ = 1310纳米和1550纳米光照),即使辐照功率密度高达10微瓦/微米,隧穿电流光谱的峰值电压也不会改变。相比之下,通过λ = 850纳米的光照(此时光子能量与20纳米Ge量子点的带隙能量匹配),会导致第一个空穴隧穿电流峰向正电压方向发生显著偏移(在0.33纳瓦/微米时ΔV≈0.08伏,在1.4纳瓦/微米时ΔV≈0.15伏),甚至在更高的正电压值处会产生额外的光电流峰(在10纳瓦/微米辐照时ΔV≈0.2伏)。当用λ = 405纳米激光在低得多的光功率条件下照射Ge - QD SHT时,这些实验观察结果得到了进一步加强。新产生的电流峰归因于激子、双激子和正三激子复合体的贡献。此外,激子结合能可以通过分析隧穿电流光谱来确定。