Shen Fang, Du He, Qin Hongyu, Wei Zongwu, Kuang Wei, Hu Nan, Lv Wensong, Yi Zhihui, Huang Dan, Chen Zhengjun, He Huibing
Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.
School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, P. R. China.
Small. 2024 Jan;20(1):e2305119. doi: 10.1002/smll.202305119. Epub 2023 Aug 31.
Rampant dendrite growth, electrode passivation and severe corrosion originate from the uncontrolled ions migration behavior of Zn , SO , and H , which are largely compromising the aqueous zinc ion batteries (AZIBs) performance. Exploring the ultimate strategy to eliminate all the Zn anode issues is challenging but urgent at present. Herein, a fluorinated separator interface (PVDF@GF) is constructed simply by grafting the polyvinylidene difluoride (PVDF) on the GF surface to realize high-performance AZIBs. Experimental and theoretical studies reveal that the strong interaction between C─F bonds in the PVDF and Zn ions enables evenly redistributed Zn ions concentration at the electrode interface and accelerates the Zn transportation kinetics, leading to homogeneous and fast Zn deposition. Furthermore, the electronegative separator interface can spontaneously repel the SO and anchor H ions to alleviate the passivation and corrosion. Accordingly, the Zn|Zn symmetric cell with PVDF@GF harvests a superior cycling stability of 500 h at 10 mAh cm , and the Zn|VOX full cell delivers 76.8% capacity retention after 1000 cycles at 2 A g . This work offers an all-round solution and provides new insights for the design of advanced separators with ionic sieve function toward stable and reversible Zn metal anode chemistry.
枝晶的肆意生长、电极钝化和严重腐蚀源于锌离子、硫酸根离子和氢离子不受控制的离子迁移行为,这在很大程度上损害了水系锌离子电池(AZIBs)的性能。探索消除所有锌负极问题的终极策略具有挑战性,但目前十分迫切。在此,通过在玻璃纤维(GF)表面接枝聚偏氟乙烯(PVDF),简单地构建了一种氟化隔膜界面(PVDF@GF),以实现高性能的水系锌离子电池。实验和理论研究表明,PVDF中碳氟键与锌离子之间的强相互作用使电极界面处的锌离子浓度均匀重新分布,并加速了锌的传输动力学,从而导致锌的均匀快速沉积。此外,带负电的隔膜界面可以自发排斥硫酸根离子并锚定氢离子,以减轻钝化和腐蚀。因此,具有PVDF@GF的锌|锌对称电池在10 mAh cm²的电流密度下具有500小时的优异循环稳定性,锌|氧化钒全电池在2 A g⁻¹的电流密度下经过1000次循环后容量保持率为76.8%。这项工作提供了一个全面的解决方案,并为设计具有离子筛功能的先进隔膜以实现稳定和可逆的锌金属负极化学提供了新的见解。