Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany.
Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany.
Adv Sci (Weinh). 2023 Nov;10(31):e2304336. doi: 10.1002/advs.202304336. Epub 2023 Aug 31.
Light can effectively interrogate biological systems in a reversible and physiologically compatible manner with high spatiotemporal precision. Understanding the biophysics of photo-induced processes in bio-systems is crucial for achieving relevant clinical applications. Employing membranes doped with the photolipid azobenzene-phosphatidylcholine (azo-PC), a holistic picture of light-triggered changes in membrane kinetics, morphology, and material properties obtained from correlative studies on cell-sized vesicles, Langmuir monolayers, supported lipid bilayers, and molecular dynamics simulations is provided. Light-induced membrane area increases as high as ≈25% and a ten-fold decrease in the membrane bending rigidity is observed upon trans-to-cis azo-PC isomerization associated with membrane leaflet coupling and molecular curvature changes. Vesicle electrodeformation measurements and atomic force microscopy reveal that trans azo-PC bilayers are thicker than palmitoyl-oleoyl phosphatidylcholine (POPC) bilayers but have higher specific membrane capacitance and dielectric constant suggesting an increased ability to store electric charges across the membrane. Lastly, incubating POPC vesicles with azo-PC solutions results in the insertion of azo-PC in the membrane enabling them to become photoresponsive. All these results demonstrate that light can be used to finely manipulate the shape, mechanical and electric properties of photolipid-doped minimal cell models, and liposomal drug carriers, thus, presenting a promising therapeutic alternative for the repair of cellular disorders.
光可以以一种可逆且与生理兼容的方式,以高时空精度有效地探测生物系统。了解光诱导生物系统中过程的生物物理特性对于实现相关的临床应用至关重要。通过使用掺杂有光脂质偶氮苯-磷脂酰胆碱(azo-PC)的膜,从细胞大小的囊泡、Langmuir 单层膜、支撑脂质双层膜和分子动力学模拟的相关研究中,可以获得关于光触发的膜动力学、形态和材料性质变化的整体图景。光诱导的膜面积增加高达≈25%,并且在与膜小叶偶联和分子曲率变化相关的 trans-to-cis azo-PC 异构化过程中,膜弯曲刚度降低了十倍。囊泡电极变形测量和原子力显微镜表明,trans azo-PC 双层膜比棕榈酰-油酰磷脂酰胆碱(POPC)双层膜厚,但具有更高的比膜电容和介电常数,这表明跨膜存储电荷的能力增强。最后,将 azo-PC 溶液孵育到 POPC 囊泡中会导致 azo-PC 插入到膜中,使它们能够对光产生响应。所有这些结果表明,光可以用于精细地操纵光脂质掺杂的最小细胞模型和脂质体药物载体的形状、机械和电性质,从而为修复细胞紊乱提供了一种有前途的治疗替代方法。