文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于社区随访数据并运用机器学习的糖尿病风险预测模型

Diabetes risk prediction model based on community follow-up data using machine learning.

作者信息

Jiang Liangjun, Xia Zhenhua, Zhu Ronghui, Gong Haimei, Wang Jing, Li Juan, Wang Lei

机构信息

College of Information and Communication Engineering, State Key Lab of Marine Resource Utilisation in South China Sea, Hainan University, Haikou, China.

Electronics & Information School of Yangtze University, Jingzhou, China.

出版信息

Prev Med Rep. 2023 Aug 20;35:102358. doi: 10.1016/j.pmedr.2023.102358. eCollection 2023 Oct.


DOI:10.1016/j.pmedr.2023.102358
PMID:37654514
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10465943/
Abstract

Diabetes is a chronic metabolic disease characterized by hyperglycemia, the follow-up management of diabetes patients is mostly in the community, but the relationship between key lifestyle indicators in community follow-up and the risk of diabetes is unclear. In order to explore the association between key life characteristic indicators of community follow-up and the risk of diabetes, 252,176 follow-up records of people with diabetes patients from 2016 to 2023 were obtained from Haizhu District, Guangzhou. According to the follow-up data, the key life characteristic indicators that affect diabetes are determined, and the optimal feature subset is obtained through feature selection technology to accurately assess the risk of diabetes. A diabetes risk assessment model based on a random forest classifier was designed, which used optimal feature parameter selection and algorithm model comparison, with an accuracy of 91.24% and an AUC corresponding to the ROC curve of 97%. In order to improve the applicability of the model in clinical and real life, a diabetes risk score card was designed and tested using the original data, the accuracy was 95.15%, and the model reliability was high. The diabetes risk prediction model based on community follow-up big data mining can be used for large-scale risk screening and early warning by community doctors based on patient follow-up data, further promoting diabetes prevention and control strategies, and can also be used for wearable devices or intelligent biosensors for individual patient self examination, in order to improve lifestyle and reduce risk factor levels.

摘要

糖尿病是一种以高血糖为特征的慢性代谢性疾病,糖尿病患者的后续管理大多在社区进行,但社区随访中的关键生活方式指标与糖尿病风险之间的关系尚不清楚。为了探讨社区随访的关键生活特征指标与糖尿病风险之间的关联,从广州海珠区获取了2016年至2023年252176例糖尿病患者的随访记录。根据随访数据,确定影响糖尿病的关键生活特征指标,并通过特征选择技术获得最优特征子集,以准确评估糖尿病风险。设计了一种基于随机森林分类器的糖尿病风险评估模型,该模型采用了最优特征参数选择和算法模型比较,准确率为91.24%,ROC曲线对应的AUC为97%。为了提高模型在临床和现实生活中的适用性,设计了糖尿病风险评分卡并使用原始数据进行测试,准确率为95.15%,模型可靠性高。基于社区随访大数据挖掘的糖尿病风险预测模型可用于社区医生根据患者随访数据进行大规模风险筛查和预警,进一步推动糖尿病防控策略,也可用于可穿戴设备或智能生物传感器进行个体患者自我检测,以改善生活方式并降低风险因素水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/a33a33b974f6/fx2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/e28f519ac596/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/502e159f6f28/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/bfd94b2dc521/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/9a81703c13f1/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/c6da6a462376/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/dd2e4a269af2/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/889e004837b5/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/5f72374c9867/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/6d057fa30267/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/3913e90f84da/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/b9ab8560480b/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/a33a33b974f6/fx2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/e28f519ac596/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/502e159f6f28/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/bfd94b2dc521/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/9a81703c13f1/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/c6da6a462376/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/dd2e4a269af2/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/889e004837b5/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/5f72374c9867/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/6d057fa30267/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/3913e90f84da/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/b9ab8560480b/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01eb/10465943/a33a33b974f6/fx2.jpg

相似文献

[1]
Diabetes risk prediction model based on community follow-up data using machine learning.

Prev Med Rep. 2023-8-20

[2]
Diabetes prediction model for unbalanced community follow-up data set based on optimal feature selection and scorecard.

Digit Health. 2024-2-29

[3]
Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.

Artif Intell Med. 2019-7-26

[4]
Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study.

PLoS Med. 2018-11-6

[5]
Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation.

JMIR Med Inform. 2020-7-6

[6]
Acute Exacerbation of a Chronic Obstructive Pulmonary Disease Prediction System Using Wearable Device Data, Machine Learning, and Deep Learning: Development and Cohort Study.

JMIR Mhealth Uhealth. 2021-5-6

[7]
Prediction of atherosclerosis using machine learning based on operations research.

Math Biosci Eng. 2022-3-14

[8]
A Machine-Learning-Based Prediction Method for Hypertension Outcomes Based on Medical Data.

Diagnostics (Basel). 2019-11-7

[9]
Machine learning-based prediction of postpartum hemorrhage after vaginal delivery: combining bleeding high risk factors and uterine contraction curve.

Arch Gynecol Obstet. 2022-10

[10]
KFPredict: An ensemble learning prediction framework for diabetes based on fusion of key features.

Comput Methods Programs Biomed. 2023-4

引用本文的文献

[1]
Type 2 Diabetes Prediction Model in China: A Five-Year Systematic Review.

Healthcare (Basel). 2025-8-15

[2]
Learning from the machine: is diabetes in adults predicted by lifestyle variables? A retrospective predictive modelling study of NHANES 2007-2018.

BMJ Open. 2025-3-22

[3]
Risk Prediction of high blood glucose among women (15-49 years) and men (15-54 years) in India: An analysis from National Family Health Survey-5 (2019-21).

J Family Med Prim Care. 2024-11

[4]
Integrated bagging-RF learning model for diabetes diagnosis in middle-aged and elderly population.

PeerJ Comput Sci. 2024-10-31

本文引用的文献

[1]
Global Prevalence of Diabetic Retinopathy in Pediatric Type 2 Diabetes: A Systematic Review and Meta-analysis.

JAMA Netw Open. 2023-3-1

[2]
Adherence to a Healthy Lifestyle in Association With Microvascular Complications Among Adults With Type 2 Diabetes.

JAMA Netw Open. 2023-1-3

[3]
The Prevalence of Obesity Among Children With Type 2 Diabetes: A Systematic Review and Meta-analysis.

JAMA Netw Open. 2022-12-1

[4]
Prevalence and Early Prediction of Diabetes Using Machine Learning in North Kashmir: A Case Study of District Bandipora.

Comput Intell Neurosci. 2022

[5]
Data-Driven Machine-Learning Methods for Diabetes Risk Prediction.

Sensors (Basel). 2022-7-15

[6]
Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective.

Comput Methods Programs Biomed. 2022-6

[7]
Prevalence of Polycystic Ovary Syndrome in Patients With Pediatric Type 2 Diabetes: A Systematic Review and Meta-analysis.

JAMA Netw Open. 2022-2-1

[8]
Intelligent type 2 diabetes risk prediction from administrative claim data.

Inform Health Soc Care. 2022-7-3

[9]
Environmental chemical exposure dynamics and machine learning-based prediction of diabetes mellitus.

Sci Total Environ. 2022-2-1

[10]
Artificial intelligence and diabetes technology: A review.

Metabolism. 2021-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索