文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于数据驱动的机器学习方法在糖尿病风险预测中的应用。

Data-Driven Machine-Learning Methods for Diabetes Risk Prediction.

机构信息

Department of Computer Engineering and Informatics, University of Patras, 26504 Patras, Greece.

出版信息

Sensors (Basel). 2022 Jul 15;22(14):5304. doi: 10.3390/s22145304.


DOI:10.3390/s22145304
PMID:35890983
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9318204/
Abstract

Diabetes mellitus is a chronic condition characterized by a disturbance in the metabolism of carbohydrates, fats and proteins. The most characteristic disorder in all forms of diabetes is hyperglycemia, i.e., elevated blood sugar levels. The modern way of life has significantly increased the incidence of diabetes. Therefore, early diagnosis of the disease is a necessity. Machine Learning (ML) has gained great popularity among healthcare providers and physicians due to its high potential in developing efficient tools for risk prediction, prognosis, treatment and the management of various conditions. In this study, a supervised learning methodology is described that aims to create risk prediction tools with high efficiency for type 2 diabetes occurrence. A features analysis is conducted to evaluate their importance and explore their association with diabetes. These features are the most common symptoms that often develop slowly with diabetes, and they are utilized to train and test several ML models. Various ML models are evaluated in terms of the Precision, Recall, F-Measure, Accuracy and AUC metrics and compared under 10-fold cross-validation and data splitting. Both validation methods highlighted Random Forest and K-NN as the best performing models in comparison to the other models.

摘要

糖尿病是一种以碳水化合物、脂肪和蛋白质代谢紊乱为特征的慢性疾病。所有类型糖尿病中最典型的紊乱是高血糖,即血糖水平升高。现代生活方式显著增加了糖尿病的发病率。因此,早期诊断疾病是必要的。由于机器学习 (ML) 在开发用于风险预测、预后、治疗和管理各种疾病的高效工具方面具有很高的潜力,因此在医疗保健提供者和医生中得到了广泛的关注。在这项研究中,描述了一种监督学习方法,旨在创建用于 2 型糖尿病发生的高效风险预测工具。进行特征分析以评估其重要性并探索其与糖尿病的关联。这些特征是糖尿病常见的且通常发展缓慢的症状,用于训练和测试几种 ML 模型。根据 Precision、Recall、F-Measure、Accuracy 和 AUC 指标评估各种 ML 模型,并在 10 倍交叉验证和数据分割下进行比较。两种验证方法都强调随机森林和 K-NN 是表现最佳的模型,优于其他模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/9318204/8649062f60ff/sensors-22-05304-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/9318204/5fed72368151/sensors-22-05304-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/9318204/0df2efa0ec6d/sensors-22-05304-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/9318204/8b89f5746759/sensors-22-05304-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/9318204/e0aa7b70f296/sensors-22-05304-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/9318204/d6cbe5528458/sensors-22-05304-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/9318204/3ee21b290814/sensors-22-05304-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/9318204/2ff5b5b2d3e5/sensors-22-05304-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/9318204/8649062f60ff/sensors-22-05304-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/9318204/5fed72368151/sensors-22-05304-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/9318204/0df2efa0ec6d/sensors-22-05304-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/9318204/8b89f5746759/sensors-22-05304-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/9318204/e0aa7b70f296/sensors-22-05304-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/9318204/d6cbe5528458/sensors-22-05304-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/9318204/3ee21b290814/sensors-22-05304-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/9318204/2ff5b5b2d3e5/sensors-22-05304-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/9318204/8649062f60ff/sensors-22-05304-g008.jpg

相似文献

[1]
Data-Driven Machine-Learning Methods for Diabetes Risk Prediction.

Sensors (Basel). 2022-7-15

[2]
Machine Learning Methods for Hypercholesterolemia Long-Term Risk Prediction.

Sensors (Basel). 2022-7-18

[3]
Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques.

Int J Med Inform. 2021-5

[4]
Predictive model and risk analysis for peripheral vascular disease in type 2 diabetes mellitus patients using machine learning and shapley additive explanation.

Front Endocrinol (Lausanne). 2024

[5]
Prediction of diabetes disease using an ensemble of machine learning multi-classifier models.

BMC Bioinformatics. 2023-9-12

[6]
Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective.

Comput Methods Programs Biomed. 2022-6

[7]
Machine Learning Models for Data-Driven Prediction of Diabetes by Lifestyle Type.

Int J Environ Res Public Health. 2022-11-15

[8]
Comparative study on risk prediction model of type 2 diabetes based on machine learning theory: a cross-sectional study.

BMJ Open. 2023-8-29

[9]
Application of information theoretic feature selection and machine learning methods for the development of genetic risk prediction models.

Sci Rep. 2021-12-2

[10]
Machine learning algorithms for predicting COVID-19 mortality in Ethiopia.

BMC Public Health. 2024-6-28

引用本文的文献

[1]
Enhancing diabetes risk prediction through focal active learning and machine learning models.

PLoS One. 2025-7-8

[2]
Data-driven diabetes mellitus prediction and management: a comparative evaluation of decision tree classifier and artificial neural network models along with statistical analysis.

Sci Rep. 2025-6-2

[3]
Prediction of coronary heart disease based on klotho levels using machine learning.

Sci Rep. 2025-5-27

[4]
Machine learning and artificial intelligence in type 2 diabetes prediction: a comprehensive 33-year bibliometric and literature analysis.

Front Digit Health. 2025-3-27

[5]
Next-generation diabetes diagnosis and personalized diet-activity management: A hybrid ensemble paradigm.

PLoS One. 2025-1-8

[6]
Risk Prediction of high blood glucose among women (15-49 years) and men (15-54 years) in India: An analysis from National Family Health Survey-5 (2019-21).

J Family Med Prim Care. 2024-11

[7]
Comparative study of ten machine learning algorithms for short-term forecasting in gas warning systems.

Sci Rep. 2024-9-20

[8]
Proactive Identification of Patients with Diabetes at Risk of Uncontrolled Outcomes during a Diabetes Management Program: Conceptualization and Development Study Using Machine Learning.

JMIR Form Res. 2024-4-26

[9]
A feature optimization study based on a diabetes risk questionnaire.

Front Public Health. 2024-2-23

[10]
Diabetes risk prediction model based on community follow-up data using machine learning.

Prev Med Rep. 2023-8-20

本文引用的文献

[1]
Itch in diabetes: a common underestimated problem.

Postepy Dermatol Alergol. 2021-4

[2]
Stroke Risk Prediction with Machine Learning Techniques.

Sensors (Basel). 2022-6-21

[3]
Machine learning-based prediction of COVID-19 diagnosis based on symptoms.

NPJ Digit Med. 2021-1-4

[4]
The Effects of Type 2 Diabetes Mellitus on Organ Metabolism and the Immune System.

Front Immunol. 2020-7-22

[5]
Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges.

J Infect Public Health. 2020-8-2

[6]
Early detection of type 2 diabetes mellitus using machine learning-based prediction models.

Sci Rep. 2020-7-20

[7]
Machine Learning and Prediction of All-Cause Mortality in COPD.

Chest. 2020-9

[8]
Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia - A systematic review, meta-analysis, and meta-regression.

Diabetes Metab Syndr. 2020

[9]
Logistic regression was as good as machine learning for predicting major chronic diseases.

J Clin Epidemiol. 2020-6

[10]
Sociodemographic and lifestyle-related risk factors for identifying vulnerable groups for type 2 diabetes: a narrative review with emphasis on data from Europe.

BMC Endocr Disord. 2020-3-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索