Suppr超能文献

可溶性N-糖基转移酶催化机制的研究助力非经典糖基化位点处N-聚糖的合成。

Investigation of the Catalytic Mechanism of a Soluble N-glycosyltransferase Allows Synthesis of N-glycans at Noncanonical Sequons.

作者信息

Hao Zhiqiang, Guo Qiang, Feng Yuanyuan, Zhang Zihan, Li Tiantian, Tian Zhixin, Zheng Jianting, Da Lin-Tai, Peng Wenjie

机构信息

Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

JACS Au. 2023 Aug 7;3(8):2144-2155. doi: 10.1021/jacsau.3c00214. eCollection 2023 Aug 28.

Abstract

The soluble N-glycosyltransferase from (ApNGT) can establish an N-glycosidic bond at the asparagine residue in the Asn-Xaa-Ser/Thr consensus sequon and is one of the most promising tools for N-glycoprotein production. Here, by integrating computational and experimental strategies, we revealed the molecular mechanism of the substrate recognition and following catalysis of ApNGT. These findings allowed us to pinpoint a key structural motif (DVYM) in ApNGT responsible for the peptide substrate recognition. Moreover, Y222 and H371 of ApNGT were found to participate in activating the acceptor Asn. The constructed models were supported by further crystallographic studies and the functional roles of the identified residues were validated by measuring the glycosylation activity of various mutants against a library of synthetic peptides. Intriguingly, with particular mutants, site-selective N-glycosylation of canonical or noncanonical sequons within natural polypeptides from the SARS-CoV-2 spike protein could be achieved, which were used to investigate the biological roles of the N-glycosylation in membrane fusion during virus entry. Our study thus provides in-depth molecular mechanisms underlying the substrate recognition and catalysis for ApNGT, leading to the synthesis of previously unknown chemically defined N-glycoproteins for exploring the biological importance of the N-glycosylation at a specific site.

摘要

来自 的可溶性N-糖基转移酶(ApNGT)可以在Asn-Xaa-Ser/Thr共有序列中的天冬酰胺残基处建立N-糖苷键,是生产N-糖蛋白最有前景的工具之一。在此,通过整合计算和实验策略,我们揭示了ApNGT底物识别及后续催化的分子机制。这些发现使我们能够确定ApNGT中负责肽底物识别的关键结构基序(DVYM)。此外,发现ApNGT的Y222和H371参与激活受体天冬酰胺。构建的模型得到了进一步晶体学研究的支持,通过测量各种突变体对合成肽文库的糖基化活性,验证了所鉴定残基的功能作用。有趣的是,利用特定突变体,可以实现严重急性呼吸综合征冠状病毒2(SARS-CoV-2)刺突蛋白天然多肽内典型或非典型序列的位点选择性N-糖基化,用于研究病毒进入过程中N-糖基化在膜融合中的生物学作用。因此,我们的研究提供了ApNGT底物识别和催化的深入分子机制,从而合成了以前未知的化学定义的N-糖蛋白,用于探索特定位点N-糖基化的生物学重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验