Suppr超能文献

三重态敏化使重氮辛在激发波长上实现了130纳米红移的双向异构化。

Triplet sensitization enables bidirectional isomerization of diazocine with 130 nm redshift in excitation wavelengths.

作者信息

Isokuortti Jussi, Griebenow Thomas, von Glasenapp Jan-Simon, Raeker Tim, Filatov Mikhail A, Laaksonen Timo, Herges Rainer, Durandin Nikita A

机构信息

Faculty of Engineering and Natural Sciences, Tampere University FI-33101 Tampere Finland

Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-University of Kiel 24098 Kiel Germany

出版信息

Chem Sci. 2023 Aug 8;14(34):9161-9166. doi: 10.1039/d3sc02681g. eCollection 2023 Aug 30.

Abstract

Diazocines are bridged azobenzenes with phenyl rings connected by a CH-CH group. Despite this rather small structural difference, diazocine exhibits improved properties over azobenzene as a photoswitch and most importantly, its configuration is more stable than the isomer. Herein, we reveal yet another unique feature of this emerging class of photoswitches. In striking contrast to azobenzenes and other photochromes, diazocine can be selectively switched in → direction and most intriguingly from its thermodynamically stable to metastable isomer upon successive excitation of two different triplet sensitizers present in solution at the same time. This approach leads to extraordinary large redshift of excitation wavelengths to perform isomerization from 400 nm blue to 530 nm green light ( → ) and from 530 nm green to 740 nm far-red one ( → ), which falls in the near-infrared window in biological tissue. Therefore, this work opens up of potential avenues for utilizing diazocines for example in photopharmacology, smart materials, light energy harvesting/storage devices, and out-of-equilibrium systems.

摘要

二氮杂萘是由-CH-CH基团连接苯环的桥连偶氮苯。尽管结构差异相当小,但二氮杂萘作为光开关,其性能优于偶氮苯,最重要的是,其反式构型比顺式异构体更稳定。在此,我们揭示了这类新兴光开关的另一个独特特性。与偶氮苯和其他光致变色化合物形成鲜明对比的是,二氮杂萘可以选择性地向反式→顺式方向切换,最有趣的是,在溶液中同时存在的两种不同三重态敏化剂相继激发下,它能从热力学稳定的反式异构体转变为亚稳态的顺式异构体。这种方法导致激发波长出现极大的红移,从而实现从400 nm蓝光到530 nm绿光(反式→顺式)以及从530 nm绿光到740 nm远红光(顺式→反式)的异构化,后者位于生物组织的近红外窗口内。因此,这项工作为二氮杂萘在例如光药理学、智能材料、光能收集/存储设备和非平衡系统中的应用开辟了潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d8b/10466275/f03029fd1bf6/d3sc02681g-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验