成功的迂回之路:光开关间接激发
Detour to success: photoswitching indirect excitation.
作者信息
Kuntze Kim, Isokuortti Jussi, van der Wal Jacob J, Laaksonen Timo, Crespi Stefano, Durandin Nikita A, Priimagi Arri
机构信息
Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
Department of Chemistry, University of Texas at Austin Austin TX USA.
出版信息
Chem Sci. 2024 Jul 2;15(30):11684-11698. doi: 10.1039/d4sc02538e. eCollection 2024 Jul 31.
Photoswitchable molecules that undergo nanoscopic changes upon photoisomerisation can be harnessed to control macroscopic properties such as colour, solubility, shape, and motion of the systems they are incorporated into. These molecules find applications in various fields of chemistry, physics, biology, and materials science. Until recently, research efforts have focused on the design of efficient photoswitches responsive to low-energy (red or near-infrared) irradiation, which however may compromise other molecular properties such as thermal stability and robustness. Indirect isomerisation methods enable photoisomerisation with low-energy photons without altering the photoswitch core, and also open up new avenues in controlling the thermal switching mechanism. In this perspective, we present the state of the art of five indirect excitation methods: two-photon excitation, triplet sensitisation, photon upconversion, photoinduced electron transfer, and indirect thermal methods. Each impacts our understanding of the fundamental physicochemical properties of photochemical switches, and offers unique application prospects in biomedical technologies and beyond.
光异构化时会发生纳米级变化的光开关分子可用于控制宏观性质,如它们所融入系统的颜色、溶解度、形状和运动。这些分子在化学、物理、生物学和材料科学的各个领域都有应用。直到最近,研究工作主要集中在设计对低能量(红色或近红外)辐射有响应的高效光开关上,然而这可能会损害其他分子性质,如热稳定性和稳健性。间接异构化方法能够利用低能量光子进行光异构化,而不改变光开关核心,还为控制热开关机制开辟了新途径。从这个角度出发,我们介绍了五种间接激发方法的现状:双光子激发、三线态敏化、光子上转换、光致电子转移和间接热方法。每种方法都影响着我们对光化学开关基本物理化学性质的理解,并在生物医学技术及其他领域提供了独特的应用前景。
相似文献
Chem Sci. 2024-7-2
Chem Soc Rev. 2018-2-22
Angew Chem Int Ed Engl. 2023-12-21
Acc Chem Res. 2018-5-15
引用本文的文献
Beilstein J Org Chem. 2025-4-25
RSC Med Chem. 2025-3-11
Molecules. 2024-11-3
Angew Chem Int Ed Engl. 2025-1-10
本文引用的文献
Angew Chem Int Ed Engl. 2023-12-21
J Phys Chem Lett. 2023-10-12
Nat Rev Chem. 2022-1
Chem Commun (Camb). 2023-1-17
Chem Sci. 2022-12-1
ACS Appl Mater Interfaces. 2023-1-18