Albacete Sergio, Sancho Gonzalo, Azpiazu Celeste, Rodrigo Anselm, Molowny-Horas Roberto, Sgolastra Fabio, Bosch Jordi
Universitat Autònoma de Barcelona, Bellaterra, Spain.
Centre for Ecological Research and Forestry Applications (CREAF), Bellaterra, Spain.
Glob Chang Biol. 2023 Nov;29(22):6248-6260. doi: 10.1111/gcb.16928. Epub 2023 Sep 1.
Bee populations are exposed to multiple stressors, including land-use change, biological invasions, climate change, and pesticide exposure, that may interact synergistically. We analyze the combined effects of climate warming and sublethal insecticide exposure in the solitary bee Osmia cornuta. Previous Osmia studies show that warm wintering temperatures cause body weight loss, lipid consumption, and fat body depletion. Because the fat body plays a key role in xenobiotic detoxification, we expected that bees exposed to climate warming scenarios would be more sensitive to pesticides. We exposed O. cornuta females to three wintering treatments: current scenario (2007-2012 temperatures), near-future (2021-2050 projected temperatures), and distant-future (2051-2080). Upon emergence in spring, bees were orally exposed to three sublethal doses of an insecticide (Closer, a.i. sulfoxaflor; 0, 4.55 and 11.64 ng a.i./bee). We measured the combined effects of wintering and insecticide exposure on phototactic response, syrup consumption, and longevity. Wintering treatment by itself did not affect winter mortality, but body weight loss increased with increasing wintering temperatures. Similarly, wintering treatment by itself hardly influenced phototactic response or syrup consumption. However, bees wintered at the warmest temperatures had shorter longevity, a strong fecundity predictor in Osmia. Insecticide exposure, especially at the high dose, impaired the ability of bees to respond to light, and resulted in reduced syrup consumption and longevity. The combination of the warmest winter and the high insecticide dose resulted in a 70% longevity decrease. Smaller bees, resulting from smaller pollen-nectar provisions, had shorter longevity suggesting nutritional stress may further compromise fecundity in O. cornuta. Our results show a synergistic interaction between two major drivers of bee declines, and indicate that bees will become more sensitive to pesticides under the current global warming scenario. Our findings have important implications for pesticide regulation and underscore the need to consider multiple stressors to understand bee declines.
蜜蜂种群面临多种压力源,包括土地利用变化、生物入侵、气候变化和接触杀虫剂,这些压力源可能会产生协同作用。我们分析了气候变暖和亚致死剂量杀虫剂暴露对独居蜂角额壁蜂(Osmia cornuta)的综合影响。此前关于壁蜂的研究表明,温暖的越冬温度会导致体重减轻、脂质消耗和脂肪体耗尽。由于脂肪体在异生物质解毒中起关键作用,我们预计暴露于气候变暖情景下的蜜蜂对杀虫剂会更敏感。我们将角额壁蜂雌蜂置于三种越冬处理条件下:当前情景(2007 - 2012年的温度)、近期未来(预计2021 - 2050年的温度)和远期未来(2051 - 2080年)。春季羽化后,让蜜蜂口服三种亚致死剂量的一种杀虫剂(Closer,有效成分是氟啶虫胺腈;0、4.55和11.64纳克有效成分/只蜜蜂)。我们测量了越冬和杀虫剂暴露对趋光反应、糖浆消耗和寿命的综合影响。单独的越冬处理本身并不影响冬季死亡率,但体重减轻随着越冬温度的升高而增加。同样,单独的越冬处理对趋光反应或糖浆消耗几乎没有影响。然而,在最温暖温度下越冬的蜜蜂寿命较短,而寿命是壁蜂繁殖力的一个重要预测指标。杀虫剂暴露,尤其是高剂量暴露,损害了蜜蜂对光的反应能力,并导致糖浆消耗和寿命降低。最温暖的冬季和高剂量杀虫剂的组合导致寿命降低了70%。由于花粉 - 花蜜供应量减少而体型较小的蜜蜂寿命较短,这表明营养压力可能会进一步损害角额壁蜂的繁殖力。我们的结果显示了导致蜜蜂数量下降的两个主要因素之间的协同相互作用,并表明在当前全球变暖情景下蜜蜂对杀虫剂将变得更加敏感。我们的研究结果对杀虫剂监管具有重要意义,并强调需要考虑多种压力源来理解蜜蜂数量下降的问题。