Suppr超能文献

基于深度学习的碳离子放射治疗中蒙特卡罗剂量计算的快速去噪。

Deep learning-based fast denoising of Monte Carlo dose calculation in carbon ion radiotherapy.

机构信息

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.

Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.

出版信息

Med Phys. 2023 Dec;50(12):7314-7323. doi: 10.1002/mp.16719. Epub 2023 Sep 1.

Abstract

BACKGROUND

Plan verification is one of the important steps of quality assurance (QA) in carbon ion radiotherapy. Conventional methods of plan verification are based on phantom measurement, which is labor-intensive and time-consuming. Although the plan verification method based on Monte Carlo (MC) simulation provides a more accurate modeling of the physics, it is also time-consuming when simulating with a large number of particles. Therefore, how to ensure the accuracy of simulation results while reducing simulation time is the current difficulty and focus.

PURPOSE

The purpose of this work was to evaluate the feasibility of using deep learning-based MC denoising method to accelerate carbon-ion radiotherapy plan verification.

METHODS

Three models, including CycleGAN, 3DUNet and GhostUNet with Ghost module, were used to denoise the 1 × 10 carbon ions-based MC dose distribution to the accuracy of 1 × 10 carbon ions-based dose distribution. The CycleGAN's generator, 3DUNet and GhostUNet were all derived from the 3DUNet network. A total of 59 cases including 29 patients with head-and-neck cancers and 30 patients with lung cancers were collected, and 48 cases were randomly selected as the training set of the CycleGAN network and six cases as the test set. For the 3DUNet and GhostUNet models, the numbers of training set, validation set, and test set were 47, 6, and 6, respectively. Finally, the three models were evaluated qualitatively and quantitatively using RMSE and three-dimensional gamma analysis (3 mm, 3%).

RESULTS

The three end-to-end trained models could be used for denoising the 1 × 10 carbon ions-based dose distribution, and their generalization was proved. The GhostUNet obtained the lowest RMSE value of 0.075, indicating the smallest difference between its denoised and 1 × 10 carbon ions-based dose distributions. The average gamma passing rate (GPR) between the GhostUNet denoising-based versus 1 × 10 carbon ions-based dose distributions was 99.1%, higher than that of the CycleGAN at 94.3% and the 3DUNet at 96.2%. Among the three models, the GhostUNet model had the fewest parameters (4.27 million) and the shortest training time (99 s per epoch) but achieved the best denoising results.

CONCLUSION

The end-to-end deep network GhostUNet outperforms the CycleGAN, 3DUNet models in denoising MC dose distributions for carbon ion radiotherapy. The network requires less than 5 s to denoise a sample of MC simulation with few particles to obtain a qualitative and quantitative result comparable to the dose distribution simulated by MC with relatively large number particles, offering a significant reduction in computation time.

摘要

背景

计划验证是碳离子放射治疗质量保证(QA)的重要步骤之一。传统的计划验证方法基于体模测量,这种方法既耗时又费力。虽然基于蒙特卡罗(MC)模拟的计划验证方法为物理建模提供了更准确的方法,但当使用大量粒子进行模拟时,也需要花费很长时间。因此,如何在保证模拟结果准确性的同时减少模拟时间,是当前的难点和重点。

目的

本研究旨在评估基于深度学习的 MC 去噪方法加速碳离子放射治疗计划验证的可行性。

方法

使用 CycleGAN、3DUNet 和具有 Ghost 模块的 GhostUNet 三种模型,将 1×10 碳离子 MC 剂量分布去噪至 1×10 碳离子剂量分布的精度。CycleGAN 的生成器、3DUNet 和 GhostUNet 均源自 3DUNet 网络。共收集了 59 例患者,其中 29 例头颈部癌症患者和 30 例肺癌患者,随机选择其中 48 例作为 CycleGAN 网络的训练集,6 例作为测试集。对于 3DUNet 和 GhostUNet 模型,训练集、验证集和测试集的数量分别为 47、6 和 6。最后,使用均方根误差(RMSE)和三维伽马分析(3mm、3%)对这三种模型进行定性和定量评估。

结果

这三种端到端训练的模型均可用于对 1×10 碳离子剂量分布进行去噪,验证了它们的泛化能力。GhostUNet 的 RMSE 值最低,为 0.075,表明其去噪剂量分布与 1×10 碳离子剂量分布之间的差异最小。与 1×10 碳离子剂量分布相比,GhostUNet 去噪的平均伽马通过率(GPR)为 99.1%,高于 CycleGAN 的 94.3%和 3DUNet 的 96.2%。在这三种模型中,GhostUNet 模型的参数数量(427 万)最少,训练时间最短(每个时期 99 秒),但去噪效果最好。

结论

端到端的深度网络 GhostUNet 在碳离子放射治疗 MC 剂量分布去噪方面优于 CycleGAN 和 3DUNet 模型。该网络可以在不到 5 秒的时间内对具有少量粒子的 MC 模拟进行去噪,从而获得与使用大量粒子进行 MC 模拟得到的剂量分布相当的定性和定量结果,大大减少了计算时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验