Suppr超能文献

一种基于图形处理器的用于氦离子治疗的新蒙特卡罗代码。

A new GPU-based Monte Carlo code for helium ion therapy.

作者信息

Li Shijun, Gao Ning, Cheng Bo, Liu Junyi, Chang Yankui, Pei Xi, Xu Xie George

机构信息

School of Nuclear Science and Technology, University of Science and Technology of China, 230026, Hefei, China.

Anhui Wisdom Technology Company Limited, 230088, Hefei, Anhui, China.

出版信息

Strahlenther Onkol. 2025 Feb 7. doi: 10.1007/s00066-024-02357-w.

Abstract

PURPOSE

This work presents an effort to extend the capabilities of the previously introduced GPU-based Monte Carlo code ARCHER for helium ion therapy.

METHODS

ARCHER performs helium ion transport simulations in voxelized geometry, covering kinetic energy levels up to 220 MeV/u. The physical processes are modeled using a class II condensed-history algorithm, considering ionization, energy straggling, multiple scattering, and elastic and inelastic nuclear interactions. A new nuclear-event-repeat algorithm is proposed to generate inelastic nuclear reaction products. Secondary protons, deuterons, tritons, and He particles are tracked, while other particles either deposit their energy locally or are ignored. The code is developed under the compute unified device architecture (CUDA) platform to improve computational efficiency. Validations are conducted by benchmarking our code against TOPAS in different phantoms.

RESULTS

Dose distribution comparisons demonstrate strong agreement between our code and TOPAS. The mean point-by-point local relative errors in the region where the dose exceeds 10% of the maximum dose range from 0.25% to 1.31% for all phantoms. In the strict 1%/1 mm criterion, gamma passing rates for a head-neck case, chest case, and prostate case are 99.8%, 96.9%, and 99.6%, respectively. Except for the lung phantom, ARCHER takes less than 10 s to simulate 10 million primary helium ions using a single NVIDIA GeForce RTX 3080 card (NVIDIA Corporation, Santa Clara, USA), while TOPAS requires several minutes on a computational platform with two Intel Xeon Gold 6348 CPUs (Intel Corporation, Santa Clara, USA) with 56 cores.

CONCLUSION

This work presents the development and benchmarking of the first GPU-based dose engine for helium ion therapy. The code has been proven to achieve high levels of accuracy and efficiency.

摘要

目的

本研究致力于扩展先前引入的基于图形处理器(GPU)的蒙特卡罗代码ARCHER在氦离子治疗方面的功能。

方法

ARCHER在体素化几何结构中进行氦离子输运模拟,涵盖高达220 MeV/u的动能水平。物理过程采用II类凝聚历史算法进行建模,考虑了电离、能量离散、多次散射以及弹性和非弹性核相互作用。提出了一种新的核事件重复算法来生成非弹性核反应产物。追踪次级质子、氘核、氚核和氦粒子,而其他粒子则在局部沉积能量或被忽略。该代码在计算统一设备架构(CUDA)平台上开发,以提高计算效率。通过在不同体模中将我们的代码与TOPAS进行基准测试来进行验证。

结果

剂量分布比较表明我们的代码与TOPAS之间具有高度一致性。对于所有体模,剂量超过最大剂量10%的区域内,逐点局部相对误差平均值在0.25%至1.31%之间。在严格的1%/1 mm标准下,头颈病例、胸部病例和前列腺病例的伽马通过率分别为99.8%、96.9%和99.6%。除了肺部体模外,使用一块NVIDIA GeForce RTX 3080卡(美国英伟达公司,圣克拉拉),ARCHER模拟1000万个初级氦离子所需时间不到10秒,而在具有56个核心的两台英特尔至强金牌6348 CPU(美国英特尔公司,圣克拉拉)的计算平台上,TOPAS需要几分钟。

结论

本研究展示了首个基于GPU的氦离子治疗剂量引擎的开发和基准测试。该代码已被证明具有高精度和高效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验