IEEE Trans Biomed Eng. 2023 Oct;70(10):2764-2775. doi: 10.1109/TBME.2023.3261744. Epub 2023 Sep 27.
We propose a nonlinear model-based control technique for regulating the heart rate and blood pressure using vagus nerve neuromodulation. The closed-loop framework is based on an in silico model of the rat cardiovascular system for the simulation of the hemodynamic response to multi-location vagal nerve stimulation. The in silico model is derived by compartmentalizing the various physiological components involved in the closed-loop cardiovascular system with intrinsic baroreflex regulation to virtually generate nominal and hypertension-related heart dynamics of rats in rest and exercise states. The controller, using a reduced cycle-averaged model, monitors the outputs from the in silico model, estimates the current state of the reduced model, and computes the optimum stimulation locations and the corresponding parameters using a nonlinear model predictive control algorithm. The results demonstrate that the proposed control strategy is robust with respect to its ability to handle setpoint tracking and disturbance rejection in different simulation scenarios.
我们提出了一种基于非线性模型的控制技术,用于通过迷走神经神经调节来调节心率和血压。闭环框架基于大鼠心血管系统的计算模型,用于模拟多部位迷走神经刺激对血液动力学的反应。该计算模型通过将参与闭环心血管系统的各种生理成分进行分区,并具有内在的压力反射调节功能,从而虚拟地生成休息和运动状态下大鼠的正常和与高血压相关的心脏动力学。控制器使用简化的循环平均模型来监测计算模型的输出,估计简化模型的当前状态,并使用非线性模型预测控制算法计算最佳刺激位置和相应参数。结果表明,该控制策略具有较强的鲁棒性,能够在不同的模拟场景中处理设定点跟踪和干扰抑制。