Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China.
Plant Cell Environ. 2023 Dec;46(12):3887-3901. doi: 10.1111/pce.14703. Epub 2023 Sep 1.
Alfalfa (Medicago sativa L.) is considered to be the most important forage crop on a global scale. Nevertheless, soil salinity significantly decreases productivity, seriously threatening food security worldwide. One viable strategy is to explore salt stress-responsive factors and elucidate their underlying molecular mechanism, and utilize them in further alfalfa breeding. In the present study, we designated MsWRKY33 as a representative salt stress-responsive factor preferentially expressed in alfalfa roots and leaves. Subsequently, it was demonstrated that MsWRKY33 was localized in the cell nucleus, and functioned as a transcriptional activator of the W-box element. Transgenic alfalfa overexpressing MsWRKY33 displayed enhanced salt stress tolerance and antioxidant activities with no significant difference in other agronomic traits. Transcriptome profiling of MsWRKY33 transgenic alfalfa under control and salt treatment unveiled significantly altered expression of reactive oxygen species (ROS) scavenger genes in transgenic alfalfa. Subsequent examination revealed that MsWRKY33 binded to the promoter of MsERF5, activating its expression and consequently fine-tuning the ROS-scavenging enzyme activity. Furthermore, MsWRKY33 interacted with the functional fragment of MsCaMBP25, which participates in Ca signaling transduction. Collectively, this research offers new insight into the molecular mechanism of alfalfa salt stress tolerance and highlights the potential utility of MsWRKY33 in alfalfa breeding.
紫花苜蓿(Medicago sativa L.)被认为是全球最重要的饲料作物。然而,土壤盐度显著降低了生产力,严重威胁着全球的粮食安全。一种可行的策略是探索盐胁迫响应因子,并阐明其潜在的分子机制,并将其应用于进一步的苜蓿育种中。在本研究中,我们将 MsWRKY33 鉴定为苜蓿根和叶中优先表达的代表性盐胁迫响应因子。随后,证明 MsWRKY33 定位于细胞核内,并作为 W-box 元件的转录激活子发挥作用。过表达 MsWRKY33 的转基因苜蓿表现出增强的耐盐性和抗氧化活性,而其他农艺性状没有显著差异。在对照和盐处理下对 MsWRKY33 转基因苜蓿的转录组分析揭示了转基因苜蓿中活性氧(ROS)清除基因的表达显著改变。随后的检查表明,MsWRKY33 与 MsERF5 的启动子结合,激活其表达,从而精细调节 ROS 清除酶的活性。此外,MsWRKY33 与参与 Ca 信号转导的 MsCaMBP25 的功能片段相互作用。总之,这项研究为苜蓿耐盐性的分子机制提供了新的见解,并强调了 MsWRKY33 在苜蓿育种中的潜在应用。