Falin Alexey, Lv Haifeng, Janzen Eli, Edgar James H, Zhang Rui, Qian Dong, Sheu Hwo-Shuenn, Cai Qiran, Gan Wei, Wu Xiaojun, Santos Elton J G, Li Lu Hua
Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Geelong, VIC, 3216, Australia.
Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Nat Commun. 2023 Sep 1;14(1):5331. doi: 10.1038/s41467-023-41148-2.
The ideal mechanical properties and behaviors of materials without the influence of defects are of great fundamental and engineering significance but considered inaccessible. Here, we use single-atom-thin isotopically pure hexagonal boron nitride (hBN) to demonstrate that two-dimensional (2D) materials offer us close-to ideal experimental platforms to study intrinsic mechanical phenomena. The highly delicate isotope effect on the mechanical properties of monolayer hBN is directly measured by indentation: lighter B gives rise to higher elasticity and strength than heavier B. This anomalous isotope effect establishes that the intrinsic mechanical properties without the effect of defects could be measured, and the so-called ultrafine and normally neglected isotopic perturbation in nuclear charge distribution sometimes plays a more critical role than the isotopic mass effect in the mechanical and other physical properties of materials.
在无缺陷影响的情况下,材料的理想力学性能和行为具有重大的基础和工程意义,但被认为难以实现。在此,我们使用单原子层厚度的同位素纯六方氮化硼(hBN)来证明二维(2D)材料为我们提供了接近理想的实验平台,以研究本征力学现象。通过压痕直接测量了高度微妙的同位素效应在单层hBN力学性能上的影响:较轻的硼(B)比较重的硼产生更高的弹性和强度。这种反常的同位素效应表明,可以测量无缺陷影响的本征力学性能,并且在材料的力学和其他物理性能中,核电荷分布中所谓的超精细且通常被忽略的同位素微扰有时比同位素质量效应发挥更关键的作用。