Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
J Environ Manage. 2023 Nov 1;345:118895. doi: 10.1016/j.jenvman.2023.118895. Epub 2023 Aug 31.
Over the past decade, there has been a substantial increase in research investigating the potential of graphitic carbon nitride (g-CN) for various environmental remediations. Renowned for its photocatalytic activity under visible light, g-CN offers a promising solution for treating water pollutants. However, traditional g-CN-based photocatalysts have inherent drawbacks, creating a disparity between laboratory efficacy and real-world applications. A primary practical challenge is their fine-powdered form, which hinders separation and recycling processes. A promising approach to address these challenges involves integrating magnetic or floating materials into conventional photocatalysts, a strategy gaining traction within the g-CN-based photocatalyst arena. Another emerging solution to enhance practical applications entails merging experimental results with contemporary computational methods. This synergy seeks to optimize the synthesis of more efficient photocatalysts and pinpoint optimal conditions for pollutant removal. While numerous review articles discuss the laboratory-based photocatalytic applications of g-CN-based materials, there is a conspicuous absence of comprehensive coverage regarding state-of-the-art research on improved g-CN-based photocatalysts for practical applications. This review fills this void, spotlighting three pivotal domains: magnetic g-CN photocatalysts, floating g-CN photocatalysts, and the application of machine learning to g-CN photocatalysis. Accompanied by a thorough analysis, this review also provides perspectives on future directions to enhance the efficacy of g-CN-based photocatalysts in water purification.
在过去的十年中,研究人员对石墨相氮化碳(g-CN)在各种环境修复中的潜力进行了大量研究。g-CN 以其在可见光下的光催化活性而闻名,为处理水污染物提供了一种有前途的解决方案。然而,传统的基于 g-CN 的光催化剂存在固有缺陷,这使得实验室的效果与实际应用之间存在差距。一个主要的实际挑战是它们的细粉形式,这阻碍了分离和回收过程。解决这些挑战的一种有前途的方法是将磁性或漂浮材料整合到传统光催化剂中,这种策略在基于 g-CN 的光催化剂领域中越来越受到关注。另一种提高实际应用的新兴解决方案是将实验结果与现代计算方法相结合。这种协同作用旨在优化更高效光催化剂的合成,并确定去除污染物的最佳条件。虽然有许多评论文章讨论了基于实验室的 g-CN 基材料的光催化应用,但对于实际应用中改进的 g-CN 基光催化剂的最新研究却缺乏全面的报道。本综述填补了这一空白,重点介绍了三个关键领域:磁性 g-CN 光催化剂、漂浮 g-CN 光催化剂以及机器学习在 g-CN 光催化中的应用。本综述对未来的发展方向进行了展望,以提高 g-CN 基光催化剂在水净化中的效率。