Suppr超能文献

中温范围内SnSe纳米薄片中热电功率因子较大的物理学原理。

Physics of large thermoelectric power factors in SnSe nanoflakes in mid-temperature range.

作者信息

Panwar Anjali, Sonnathi Neeleshwar, Mahanti Subhendra D, Malik Vikas, Bagga Anjana

机构信息

University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Delhi 110078, India.

Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, United States of America.

出版信息

J Phys Condens Matter. 2023 Sep 15;35(50). doi: 10.1088/1361-648X/acf636.

Abstract

We have theoretically investigated the underlying physics of observed high electrical conductivity (), simultaneous increase of σ and Seebeck coefficient () with temperature, and large power factors (PFs) in nominally undoped SnSe nanoflakes sintered at different temperatures, reported recently in Mandava(2022155710). Given the fact that S and σ show unusual temperature trends and that the undoped SnSe samples are highly porous and disordered, the conventional Boltzmann theory does not appear to be an appropriate model to describe their transport properties. We have, instead, used a strong disorder model based on percolation theory where charge and energy transport take place through hopping between localized states to understand these observations. Our model is able to explain the observed temperature dependence of σ and S with temperature. Large σ can be explained by a high density of localized states and a large hopping rate. The sample sintered at a higher temperature has lower disorder () and higher hopping rate (1/). We find= 0.151 eV and 1/= 0.143 × 10sfor sample sintered at 673 K and= 0.044 eV and 1/= 2.023 × 10sfor sample sintered at 703 K. These values are comparable to the reported values of transition frequencies, confirming that the dominant charge transport mechanism in these SnSe nanoflakes is hopping transport. Finally, we suggest that hopping transport via localized states can result in enhanced thermoelectric properties in disordered polycrystalline materials.

摘要

我们从理论上研究了近期Mandava(2022155710)报道的、在不同温度下烧结的名义上未掺杂的SnSe纳米薄片中观测到的高电导率(σ)、σ和塞贝克系数(S)随温度同时增加以及大功率因子(PFs)背后的物理机制。鉴于S和σ呈现出异常的温度趋势,且未掺杂的SnSe样品具有高度多孔性和无序性,传统的玻尔兹曼理论似乎不是描述其输运性质的合适模型。相反,我们使用了基于渗流理论的强无序模型,其中电荷和能量输运通过局域态之间的跳跃发生,以理解这些观测结果。我们的模型能够解释观测到的σ和S随温度的变化。大的σ可以通过高密度的局域态和大的跳跃率来解释。在较高温度下烧结的样品具有较低的无序度(ω)和较高的跳跃率(1/τ)。我们发现,对于在673 K烧结的样品,ω = 0.151 eV,1/τ = 0.143×10⁻¹² s;对于在703 K烧结的样品,ω = 0.044 eV,1/τ = 2.023×10⁻¹² s。这些值与报道的跃迁频率值相当,证实了这些SnSe纳米薄片中的主要电荷输运机制是跳跃输运。最后,我们认为通过局域态的跳跃输运可以导致无序多晶材料的热电性能增强。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验