Suppr超能文献

利用个体患者数据将两项心力衰竭试验推广至疾病登记处。

Transportability of two heart failure trials to a disease registry using individual patient data.

机构信息

School of Health and Wellbeing, University of Glasgow, Glasgow, UK.

Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.

出版信息

J Clin Epidemiol. 2023 Oct;162:160-168. doi: 10.1016/j.jclinepi.2023.08.019. Epub 2023 Sep 1.

Abstract

OBJECTIVES

Randomized controlled trials are the gold-standard for determining therapeutic efficacy, but are often unrepresentative of real-world settings. Statistical transportation methods (hereafter transportation) can partially account for these differences, improving trial applicability without breaking randomization. We transported treatment effects from two heart failure (HF) trials to a HF registry.

STUDY DESIGN AND SETTING

Individual-patient-level data from two trials (Carvedilol or Metoprolol European Trial (COMET), comparing carvedilol and metoprolol, and digitalis investigation group trial (DIG), comparing digoxin and placebo) and a Scottish HF registry were obtained. The primary end point for both trials was all-cause mortality; composite outcomes were all-cause mortality or hospitalization for COMET and HF-related death or hospitalization for DIG. We performed transportation using regression-based and inverse odds of sampling weights (IOSW) approaches.

RESULTS

Registry patients were older, had poorer renal function and received higher-doses of loop-diuretics than trial participants. For each trial, point estimates were similar for the original and IOSW (e.g., DIG composite outcome: OR 0.75 (0.69, 0.82) vs. 0.73 (0.64, 0.83)). Treatment effect estimates were also similar when examining high-risk (0.64 (0.46, 0.89)) and low-risk registry patients (0.73 (0.61, 0.86)). Similar results were obtained using regression-based transportation.

CONCLUSION

Regression-based or IOSW approaches can be used to transport trial effect estimates to patients administrative/registry data, with only moderate reductions in precision.

摘要

目的

随机对照试验是确定治疗效果的金标准,但往往不能代表真实世界的情况。统计迁移方法(以下简称迁移)可以部分解释这些差异,在不破坏随机分组的情况下提高试验的适用性。我们将两种心力衰竭(HF)试验的治疗效果迁移到 HF 登记处。

研究设计和设置

从两项试验(比较卡维地洛和美托洛尔的卡维地洛或美托洛尔欧洲试验(COMET),以及比较地高辛和安慰剂的地高辛研究组试验(DIG))和苏格兰 HF 登记处获得了个体患者水平的数据。两项试验的主要终点均为全因死亡率;COMET 的复合终点为全因死亡率或因心力衰竭住院,DIG 的复合终点为心力衰竭相关死亡或因心力衰竭住院。我们使用基于回归的和逆概率抽样权重(IOSW)方法进行迁移。

结果

登记处患者比试验参与者年龄更大,肾功能更差,使用更高剂量的袢利尿剂。对于每项试验,原始和 IOSW 的点估计值相似(例如,DIG 复合终点:OR 0.75(0.69,0.82)与 0.73(0.64,0.83))。当检查高危(0.64(0.46,0.89))和低危登记处患者(0.73(0.61,0.86))时,治疗效果估计值也相似。使用基于回归的迁移也得到了类似的结果。

结论

可以使用基于回归或 IOSW 的方法将试验效果估计值迁移到患者的行政/登记数据,仅适度降低精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验