Leiva-Escobar Ignacio, Scherkl Camilo, Haefeli Walter E, Meid Andreas D
Heidelberg University, Medical Faculty of Heidelberg, Internal Medicine IX - Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
Heidelberg University, Medical Faculty of Heidelberg, Internal Medicine IX - Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
BMJ Open. 2025 Jul 24;15(7):e089218. doi: 10.1136/bmjopen-2024-089218.
Real-world effectiveness of a new treatment is relevant information for patients, healthcare professionals and payers, especially when patients encountered in routine clinical care differ significantly from those recruited in the randomised controlled trials (RCTs) that led to approval. However, obtaining effect estimates can be challenging when a new drug has only recently been marketed and real-world data (RWD) are not yet available. For new breast cancer (BC) therapies, we illustrate how RCT inferences can be transported to a target population and how a synthetic population can be generated to mimic a target population for which no RWD is yet available.
In our framework, we defined the data-generating process for the RCT population and the real-world (target) population with confounders, effect-modulating covariates and survival times as outcomes. First, we conducted generalisability and transportability (G&T) analyses to transport the RCT results to the simulated target population, applying the inverse probability of sampling weighting and outcome model-based estimator approach. We then used Synthea to generate a synthetic target population based on German BC survival rates and combined both approaches into a coherent strategy.
Effect estimates (HRs with 95% CIs) transported from the RCT to our defined target population closely matched the expected real-world effect (RCT: 0.68 (0.65; 0.71); real-world: 0.75 (0.71; 0.79); transported from RCT: 0.76 (0.71; 0.81)). BC survival rates were very similar between observed and synthetic data (prediction error in absolute survival rates: 1.62%).
Combining G&T with synthetic data may inform decision-making in situations where RWD are not (yet) available.
新疗法的真实世界疗效对于患者、医疗保健专业人员和支付方而言都是相关信息,尤其是当常规临床护理中遇到的患者与那些在促成该疗法获批的随机对照试验(RCT)中招募的患者存在显著差异时。然而,当一种新药刚刚上市且尚无真实世界数据(RWD)可用时,获得疗效估计可能具有挑战性。对于新的乳腺癌(BC)疗法,我们阐述了如何将RCT的推断结果应用于目标人群,以及如何生成一个合成人群来模拟尚无RWD的目标人群。
在我们的框架中,我们定义了RCT人群和真实世界(目标)人群的数据生成过程,将混杂因素、效应调节协变量和生存时间作为结果。首先,我们进行了可推广性和可转移性(G&T)分析,以将RCT结果应用于模拟的目标人群,采用抽样权重的逆概率和基于结果模型的估计方法。然后,我们使用Synthea根据德国乳腺癌生存率生成一个合成目标人群,并将这两种方法结合成一个连贯的策略。
从RCT应用于我们定义的目标人群的疗效估计值(HRs及95%CI)与预期的真实世界疗效密切匹配(RCT:0.68(0.65;0.71);真实世界:0.75(0.71;0.79);从RCT应用:0.76(0.71;0.81))。观察数据和合成数据之间的乳腺癌生存率非常相似(绝对生存率的预测误差:1.62%)。
在尚无RWD的情况下,将G&T与合成数据相结合可为决策提供参考。