Zhong Yong, Peng Cheng, Huang Haili, Guan Dandan, Hwang Jinwoong, Hsu Kuan H, Hu Yi, Jia Chunjing, Moritz Brian, Lu Donghui, Lee Jun-Sik, Jia Jin-Feng, Devereaux Thomas P, Mo Sung-Kwan, Shen Zhi-Xun
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
Nat Commun. 2023 Sep 2;14(1):5340. doi: 10.1038/s41467-023-40997-1.
The field of two-dimensional (2D) ferromagnetism has been proliferating over the past few years, with ongoing interests in basic science and potential applications in spintronic technology. However, a high-resolution spectroscopic study of the 2D ferromagnet is still lacking due to the small size and air sensitivity of the exfoliated nanoflakes. Here, we report a thickness-dependent ferromagnetism in epitaxially grown CrTe thin films and investigate the evolution of the underlying electronic structure by synergistic angle-resolved photoemission spectroscopy, scanning tunneling microscopy, x-ray absorption spectroscopy, and first-principle calculations. A conspicuous ferromagnetic transition from Stoner to Heisenberg-type is directly observed in the atomically thin limit, indicating that dimensionality is a powerful tuning knob to manipulate the novel properties of 2D magnetism. Monolayer CrTe retains robust ferromagnetism, but with a suppressed Curie temperature, due to the drastic drop in the density of states near the Fermi level. Our results establish atomically thin CrTe as an excellent platform to explore the dual nature of localized and itinerant ferromagnetism in 2D magnets.
在过去几年中,二维(2D)铁磁性领域不断发展,人们对其基础科学以及在自旋电子技术中的潜在应用持续感兴趣。然而,由于剥离的纳米薄片尺寸小且对空气敏感,对二维铁磁体的高分辨率光谱研究仍然缺乏。在此,我们报道了外延生长的CrTe薄膜中与厚度相关的铁磁性,并通过角分辨光电子能谱、扫描隧道显微镜、X射线吸收光谱和第一性原理计算的协同作用,研究了其底层电子结构的演变。在原子级薄的极限情况下,直接观察到从斯托纳型到海森堡型的明显铁磁转变,这表明维度是操纵二维磁性新特性的有力调节旋钮。由于费米能级附近态密度的急剧下降,单层CrTe保留了强大的铁磁性,但居里温度受到抑制。我们的结果将原子级薄的CrTe确立为探索二维磁体中局域和巡游铁磁性双重性质的优秀平台。