Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, CA 94305, USA.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
Science. 2019 Aug 9;365(6453):605-608. doi: 10.1126/science.aaw3780. Epub 2019 Jul 25.
When two sheets of graphene are stacked at a small twist angle, the resulting flat superlattice minibands are expected to strongly enhance electron-electron interactions. Here, we present evidence that near three-quarters ([Formula: see text]) filling of the conduction miniband, these enhanced interactions drive the twisted bilayer graphene into a ferromagnetic state. In a narrow density range around an apparent insulating state at [Formula: see text], we observe emergent ferromagnetic hysteresis, with a giant anomalous Hall (AH) effect as large as 10.4 kilohms and indications of chiral edge states. Notably, the magnetization of the sample can be reversed by applying a small direct current. Although the AH resistance is not quantized, and dissipation is present, our measurements suggest that the system may be an incipient Chern insulator.
当两层石墨烯以较小的扭转角度堆叠时,所得的平坦超晶格能带预计会强烈增强电子-电子相互作用。在这里,我们提供的证据表明,在接近满带的三分之二([Formula: see text])处,这些增强的相互作用使扭曲双层石墨烯进入铁磁态。在[Formula: see text]附近的一个明显绝缘状态的窄密度范围内,我们观察到铁磁滞后现象,反常霍尔(AH)效应巨大,高达 10.4 千欧姆,并显示出手性边缘态。值得注意的是,通过施加小的直流电流可以反转样品的磁化。尽管 AH 电阻没有量子化,而且存在耗散,但我们的测量表明该系统可能是一个初生的 Chern 绝缘体。