Hall Ashley N, Hall Benjamin W, Kinney Kyle J, Olsen Gabby G, Banta Amy B, Noguera Daniel R, Donohue Timothy J, Peters Jason M
DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA.
bioRxiv. 2023 Aug 26:2023.08.25.554875. doi: 10.1101/2023.08.25.554875.
Alphaproteobacteria have a variety of cellular and metabolic features that provide important insights into biological systems and enable biotechnologies. For example, some species are capable of converting plant biomass into valuable biofuels and bioproducts have the potential to form the backbone of the sustainable bioeconomy. Among the Alphaproteobacteria, , , and , show particular promise as organisms that can be engineered to convert extracted plant lignin or sugars into bioproducts and biofuels. Genetic manipulation of these bacteria is needed to introduce engineered pathways and modulate expression of native genes with the goal of enhancing bioproduct output. Although recent work has expanded the genetic toolkit for , and still need facile, reliable approaches to deliver genetic payloads to the genome and to control gene expression. Here, we expand the platform of genetic tools for and to address these issues. We demonstrate that Tn transposition is an effective approach for introducing engineered DNA into the chromosome of and . We screen a synthetic promoter library to identify inducible promoters with strong, regulated activity in both organisms. Combining Tn integration with promoters from our library, we establish CRISPR interference systems for and that can target essential genes and modulate engineered pathways. We anticipate that these systems will greatly facilitate both genetic engineering and gene function discovery efforts in these industrially important species and other Alphaproteobacteria.
α-变形菌纲具有多种细胞和代谢特征,这些特征为生物系统提供了重要见解,并推动了生物技术的发展。例如,一些物种能够将植物生物质转化为有价值的生物燃料,生物产品有潜力成为可持续生物经济的支柱。在α-变形菌纲中,[具体物种1]、[具体物种2]和[具体物种3]作为可以被改造以将提取的植物木质素或糖类转化为生物产品和生物燃料的生物体,展现出了特别的前景。需要对这些细菌进行基因操作,以引入工程化途径并调节天然基因的表达,目标是提高生物产品产量。尽管最近的工作扩展了[具体物种1]的基因工具包,但[具体物种2]和[具体物种3]仍需要简便、可靠的方法来将基因载荷传递到基因组并控制基因表达。在这里,我们扩展了[具体物种2]和[具体物种3]的基因工具平台以解决这些问题。我们证明Tn转座是一种将工程化DNA引入[具体物种2]和[具体物种3]染色体的有效方法。我们筛选了一个合成启动子文库,以鉴定在这两种生物体中具有强且可调控活性的诱导型启动子。将Tn整合与我们文库中的启动子相结合,我们为[具体物种2]和[具体物种3]建立了CRISPR干扰系统,该系统可以靶向必需基因并调节工程化途径。我们预计这些系统将极大地促进这些具有工业重要性的物种以及其他α-变形菌纲的基因工程和基因功能发现工作。