Suppr超能文献

芳香族O-去甲基化和开环反应中的冗余及其对植物源酚类代谢的影响。

Redundancy in aromatic O-demethylation and ring opening reactions in and their impact in the metabolism of plant derived phenolics.

作者信息

Perez Jose M, Kontur Wayne S, Gehl Carson, Gille Derek M, Ma Yanjun, Niles Alyssa V, Umana German, Donohue Timothy J, Noguera Daniel R

机构信息

Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA.

DOE Great Lakes Bioenergy Research Center, Madison, WI, USA.

出版信息

Appl Environ Microbiol. 2021 Apr 15;87(8). doi: 10.1128/AEM.02794-20. Epub 2021 Feb 12.

Abstract

Lignin is a plant heteropolymer composed of phenolic subunits. Because of its heterogeneity and recalcitrance, the development of efficient methods for its valorization still remains an open challenge. One approach to utilize lignin is its chemical deconstruction into mixtures of monomeric phenolic compounds followed by biological funneling into a single product. DSM12444 has been previously engineered to produce 2-pyrone-4,6-dicarboxylic acid (PDC) from depolymerized lignin by simultaneously metabolizing multiple aromatics through convergent routes involving the intermediates 3-methoxygallic acid (3-MGA) and protocatechuic acid (PCA). We investigated enzymes predicted to be responsible for -demethylation and oxidative aromatic ring opening, two critical reactions involved in the metabolism of phenolics compounds by The results showed the involvement of DesA in -demethylation of syringic and vanillic acids, LigM in demethylation of vanillic acid and 3-MGA, and a new demethylase, DmtS, in the conversion of 3-MGA into gallic acid (GA). In addition, we found that LigAB was the main aromatic ring opening dioxygenase involved in 3-MGA, PCA, and GA metabolism, and that a previously uncharacterized dioxygenase, LigAB2, had high activity with GA. Our results indicate a metabolic route not previously identified in that involves -demethylation of 3-MGA to GA. We predict this pathway channels ∼15% of the carbon flow from syringic acid, with the rest following ring opening of 3-MGA. The new knowledge obtained in this study allowed for the creation of an improved engineered strain for the funneling of aromatic compounds that exhibits stoichiometric conversion of syringic acid into PDC. For lignocellulosic biorefineries to effectively contribute to reduction of fossil fuel use, they need to become efficient at producing chemicals from all major components of plant biomass. Making products from lignin will require engineering microorganisms to funnel multiple phenolic compounds to the chemicals of interest, and is a promising chassis for this technology. The ability of to efficiently and simultaneously degrade many phenolic compounds may be linked to having functionally redundant aromatic degradation pathways and enzymes with broad substrate specificity. A detailed knowledge of aromatic degradation pathways is thus essential to identify genetic engineering targets to maximize product yields. Furthermore, knowledge of enzyme substrate specificity is critical to redirect flow of carbon to desired pathways. This study described an uncharacterized pathway in and the enzymes that participate in this pathway, allowing the engineering of an improved strain for production of PDC from lignin.

摘要

木质素是一种由酚类亚基组成的植物杂聚物。由于其异质性和难降解性,开发高效的木质素增值方法仍然是一个悬而未决的挑战。利用木质素的一种方法是将其化学解构为单体酚类化合物的混合物,然后通过生物转化为单一产物。此前已对DSM12444进行工程改造,使其通过涉及中间体3-甲氧基没食子酸(3-MGA)和原儿茶酸(PCA)的收敛途径同时代谢多种芳烃,从而从解聚的木质素中生产2-吡喃酮-4,6-二羧酸(PDC)。我们研究了预测负责O-去甲基化和氧化芳环开环的酶,这是酚类化合物代谢过程中的两个关键反应。结果表明,DesA参与丁香酸和香草酸的O-去甲基化,LigM参与香草酸和3-MGA的去甲基化,以及一种新的去甲基酶DmtS参与3-MGA向没食子酸(GA)的转化。此外,我们发现LigAB是参与3-MGA、PCA和GA代谢的主要芳环开环双加氧酶,并且一种先前未表征的双加氧酶LigAB2对GA具有高活性。我们的结果表明在DSM12444中存在一条先前未鉴定的代谢途径,该途径涉及3-MGA向GA的O-去甲基化。我们预测该途径引导约15%的碳流来自丁香酸,其余的则通过3-MGA的环开环。本研究中获得的新知识使得能够创建一种改进的工程菌株,用于将芳族化合物转化为PDC,该菌株能够将丁香酸化学计量转化为PDC。对于木质纤维素生物精炼厂要有效地促进化石燃料使用的减少,它们需要在从植物生物质的所有主要成分生产化学品方面变得高效。从木质素生产产品将需要工程微生物将多种酚类化合物转化为感兴趣的化学品,而DSM12444是这项技术的一个有前途的底盘。DSM12444有效且同时降解多种酚类化合物的能力可能与具有功能冗余的芳族降解途径和具有广泛底物特异性的酶有关。因此,详细了解芳族降解途径对于确定基因工程靶点以最大化产品产量至关重要。此外,酶底物特异性的知识对于将碳流重新导向所需途径至关重要。本研究描述了DSM12444中一条未表征的途径以及参与该途径的酶,从而能够对一种改进的菌株进行工程改造,以从木质素生产PDC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b3/8091115/bd603efbce87/AEM.02794-20_f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验