Suppr超能文献

基于逻辑回归和贝叶斯网络构建绝经后女性骨质疏松相关因素的预测模型。

Construction of predictive model for osteoporosis related factors among postmenopausal women on the basis of logistic regression and Bayesian network.

作者信息

Wu Yanqian, Chao Jianqian, Bao Min, Zhang Na, Wang Leixia

机构信息

Health Management Research Center, School of Public Health, Southeast University, Nanjing 210096, China.

出版信息

Prev Med Rep. 2023 Aug 22;35:102378. doi: 10.1016/j.pmedr.2023.102378. eCollection 2023 Oct.

Abstract

Osteoporosis is a prevalent chronic disease that often goes unnoticed in postmenopausal women. Early identification of risk factors for osteoporosis in postmenopausal women is essential. This study aimed to develop predictive models for osteoporosis-related factors among postmenopausal women in the U.S. and explore the influencing factors. In this cross-sectional study, we included 4417 postmenopausal women from the NHANES (2009-2010, 2013-2014, and 2017-2020). Through multiple regression analysis, we found that age, minutes of sedentary activity, prednisone or cortisone usage, arthritis, bone loss around teeth, and trouble sleeping were risk factors for osteoporosis after menopause. Conversely, height, BMI, and age at the last menstrual period were identified as protective factors. The findings from the Bayesian network analysis indicated that several factors influenced osteoporosis, including age, BMI, bone loss around teeth, prednisone or cortisone usage, arthritis, and age at the last menstrual period. On the other hand, minutes of sedentary activity and height might have indirect effects, while trouble sleeping may not have a significant impact. Both logistic regression and Bayesian network models demonstrated good predictive capabilities in predicting osteoporosis among postmenopausal women. In addition, Bayesian networks offer a more intuitive depiction of the intricate network risk mechanism between diseases and factors.

摘要

骨质疏松症是一种常见的慢性疾病,在绝经后女性中常常未被察觉。早期识别绝经后女性骨质疏松症的风险因素至关重要。本研究旨在建立美国绝经后女性骨质疏松症相关因素的预测模型,并探讨影响因素。在这项横断面研究中,我们纳入了来自美国国家健康与营养检查调查(NHANES,2009 - 2010年、2013 - 2014年和2017 - 2020年)的4417名绝经后女性。通过多元回归分析,我们发现年龄、久坐活动时间、泼尼松或可的松的使用、关节炎、牙齿周围骨质流失以及睡眠问题是绝经后骨质疏松症的风险因素。相反,身高、体重指数(BMI)和末次月经年龄被确定为保护因素。贝叶斯网络分析的结果表明,几个因素会影响骨质疏松症,包括年龄、BMI、牙齿周围骨质流失、泼尼松或可的松的使用、关节炎以及末次月经年龄。另一方面,久坐活动时间和身高可能有间接影响,而睡眠问题可能没有显著影响。逻辑回归模型和贝叶斯网络模型在预测绝经后女性骨质疏松症方面都显示出良好的预测能力。此外,贝叶斯网络更直观地描绘了疾病与因素之间复杂的网络风险机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2b4/10472296/24113adbf663/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验