Suppr超能文献

利用贝叶斯层次模型的澳大利亚对流风阵风气候学。

An Australian convective wind gust climatology using Bayesian hierarchical modelling.

作者信息

Spassiani Alessio C, Mason Matthew S, Cheng Vincent Y S

机构信息

School of Civil Engineering, The University of Queensland, St Lucia, QLD 4072 Australia.

Climate Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, ON M3H 5T4 Canada.

出版信息

Nat Hazards (Dordr). 2023;118(3):2037-2067. doi: 10.1007/s11069-023-06078-8. Epub 2023 Aug 8.

Abstract

To quantify the hazard or risks associated with severe convective wind gusts, it is necessary to have a reliable and spatially complete climatology of these events. The coupling of observational and global reanalysis (ERA-Interim) data over the period 2005-2015 is used here to facilitate the development of a spatially complete convective wind gust climatology for Australia. This is done through the development of Bayesian Hierarchical models that use both weather station-based wind gust observations and seasonally averaged severe weather indices (SWI), calculated using reanalysis data, to estimate seasonal gust frequencies across the country while correcting for observational biases specifically, the sparse observational network to record events. Different SWI combinations were found to explain event counts for different seasons. For example, combinations of Lifted Index and low level wind shear were found to generate the best results for autumn and winter. While for spring and summer, the composite Microburst Index and the combination of most unstable CAPE and 0-1 km wind shear were found to be most successful. Results from these models showed a minimum in event counts during the winter months, with events that do occur mainly doing so along the southwest coast of Western Australia or along the coasts of Tasmania and Victoria. Summer is shown to have the largest event counts across the country, with the largest number of gusts occurring in northern Western Australia extending east into the Northern Territory with another maximum over northeast New South Wales. Similar trends were found with an extended application of the models to the period 1979-2015 when utilizing only reanalysis data as input. This implementation of the models highlights the versatility of the Bayesian hierarchical modelling approach and its ability, when trained, to be used in the absence of observations.

摘要

为了量化与强烈对流风阵风相关的危害或风险,有必要拥有这些事件可靠且空间完整的气候学数据。本文使用了2005 - 2015年期间观测数据与全球再分析(ERA - Interim)数据的耦合,以促进澳大利亚空间完整的对流风阵风气候学的发展。这是通过开发贝叶斯层次模型来实现的,该模型使用基于气象站的风阵风观测数据以及利用再分析数据计算的季节性平均恶劣天气指数(SWI),来估计全国的季节性阵风频率,同时针对观测偏差进行校正,特别是针对记录事件的稀疏观测网络。发现不同的SWI组合可以解释不同季节的事件数量。例如,发现抬升指数和低层风切变的组合在秋季和冬季产生的结果最佳。而对于春季和夏季,复合微下击暴流指数以及最不稳定对流有效位能与0 - 1千米风切变的组合最为成功。这些模型的结果显示,冬季月份事件数量最少,发生的事件主要集中在西澳大利亚州的西南海岸或塔斯马尼亚州和维多利亚州的海岸沿线。夏季显示全国事件数量最多,西澳大利亚州北部出现的阵风数量最多,向东延伸至北领地,新南威尔士州东北部也有另一个最大值。在将模型扩展应用到1979 - 2015年期间,仅使用再分析数据作为输入时,也发现了类似的趋势。这些模型的应用突出了贝叶斯层次建模方法的通用性及其在经过训练后,在缺乏观测数据时使用的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验