Moysiadis Theodoros, Koparanis Dimitris, Liapis Konstantinos, Ganopoulou Maria, Vrachiolias George, Katakis Ioannis, Moyssiadis Chronis, Vizirianakis Ioannis S, Angelis Lefteris, Fokianos Konstantinos, Kotsianidis Ioannis
Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace Medical School, 68100 Alexandroupolis, Greece.
School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
iScience. 2023 Aug 9;26(9):107591. doi: 10.1016/j.isci.2023.107591. eCollection 2023 Sep 15.
Personalized prediction is ideal in chronic lymphocytic leukemia (CLL). Although refined models have been developed, stratifying patients in risk groups, it is required to accommodate time-dependent information of patients, to address the clinical heterogeneity observed within these groups. In this direction, this study proposes a personalized stepwise dynamic predictive algorithm (PSDPA) for the time-to-first-treatment of the individual patient. The PSDPA introduces a personalized Score, reflecting the evolution in the patient's follow-up, employed to develop a reference pool of patients. Score evolution's similarity is used to predict, at a selected time point, the time-to-first-treatment for a new patient. Additional patient's biological information may be utilized. The algorithm was applied to 20 CLL patients, indicating that stricter assessment criteria for the Score evolution's similarity, and biological similarity exploitation, may improve prediction. The PSDPA capitalizes on both the follow-up and the biological background of the individual patient, dynamically promoting personalized prediction in CLL.
个性化预测在慢性淋巴细胞白血病(CLL)中是理想的。尽管已经开发出了精细的模型来对患者进行风险分层,但仍需要纳入患者的时间依赖性信息,以应对在这些组中观察到的临床异质性。在这个方向上,本研究提出了一种针对个体患者首次治疗时间的个性化逐步动态预测算法(PSDPA)。PSDPA引入了一个个性化评分,反映患者随访过程中的演变情况,用于建立患者参考池。在选定的时间点,利用评分演变的相似性来预测新患者的首次治疗时间。还可以利用患者的其他生物学信息。该算法应用于20例CLL患者,结果表明,对评分演变相似性和生物学相似性利用采用更严格的评估标准,可能会改善预测。PSDPA利用个体患者的随访情况和生物学背景,动态地促进CLL中的个性化预测。