Maity Sukanya, Biradar Bhimaraya R, Srivastava Saurabh, Chandewar Pranay R, Shee Debaprasad, Pratim Das Partha, Mal Sib Sankar
Low Dimensional Physics Laboratory, Department of Physics, National Institute of Technology Karnataka, Surathkal 5750525, India.
Materials and Catalysis Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal 5750525, India.
Phys Chem Chem Phys. 2023 Sep 20;25(36):24613-24624. doi: 10.1039/d3cp01872e.
In the modern era, realizing highly efficient supercapacitors (SCs) derived through green routes is paramount to reducing environmental impact. This study demonstrates ways to recycle and reuse used waste dry cell anodes to synthesize nanohybrid electrodes for SCs. Instead of contributing to landfill and the emission of toxic gas to the environment, dry cells are collected and converted into a resource for improved SC cells. The high performance of the electrode was achieved by exploiting battery-type polyoxometalate (POM) clusters infused on a reduced graphene oxide (rGO) surface. Polyoxometalate (K[α-SiMoVWO]) assisted in the precise bottom-up reduction of graphene oxide (GO) under UV irradiation at room temperature to produce vanadosilicate embedded photo-reduced graphene oxide (prGO-MoVWO). Additionally, a chemical reduction route for GO (crGO) was trialed to relate to the prGO, followed by the integration of a faradaic monolayer (crGO-MoVWO). Both composite frameworks exhibit unique hierarchical heterostructures that offer synergic effects between the dual components. As a result, the hybrid material's ion transport kinetics and electrical conductivity enhance the critical electrochemical process at the electrode's interface. The simple co-participation method delivers a remarkable specific capacity (capacitance) of 405 mA h g (1622 F g) and 117 mA h g (470 F g) for prGO-MoVWO and crGO-MoVWO nanocomposites alongside high capacitance retentions of 94.5% and 82%, respectively, at a current density of 0.3 A g. Furthermore, the asymmetric electrochromic supercapacitor crGO//crGO-MoVWO was designed, manifesting a broad operating potential (1.2 V). Finally, the asymmetric electrode material resulted in an enhanced specific capacity, energy, and power of 276.8 C g, 46.16 W h kg, and 1195 W kg, respectively, at a current density of 0.5 A g. The electrode materials were tested in the operating of a DC motor.
在现代,通过绿色途径实现高效超级电容器(SCs)对于减少环境影响至关重要。本研究展示了回收和再利用废旧干电池阳极以合成用于超级电容器的纳米混合电极的方法。干电池不再被填埋并向环境排放有毒气体,而是被收集起来并转化为用于改进超级电容器电池的资源。通过利用注入在还原氧化石墨烯(rGO)表面的电池型多金属氧酸盐(POM)簇,实现了电极的高性能。多金属氧酸盐(K[α-SiMoVWO])在室温紫外光照射下协助氧化石墨烯(GO)进行精确的自下而上还原,以生成嵌入钒硅酸盐的光还原氧化石墨烯(prGO-MoVWO)。此外,还尝试了一条与prGO相关的GO化学还原路线(crGO),随后整合了一个法拉第单层(crGO-MoVWO)。两种复合框架都展现出独特的分级异质结构,在双组分之间提供协同效应。结果,混合材料的离子传输动力学和电导率增强了电极界面处的关键电化学过程。这种简单的共参与方法为prGO-MoVWO和crGO-MoVWO纳米复合材料分别提供了405 mA h g(1622 F g)和117 mA h g(470 F g)的显著比容量(电容),在0.3 A g的电流密度下,电容保持率分别高达94.5%和82%。此外,设计了非对称电致变色超级电容器crGO//crGO-MoVWO,表现出宽工作电位(1.2 V)。最后,在0.5 A g的电流密度下,非对称电极材料分别产生了增强的比容量、能量和功率,分别为276.8 C g、46.16 W h kg和1195 W kg。这些电极材料在直流电机运行中进行了测试。