Suppr超能文献

一种利用双能CT多参数的定量模型术前预测局部进展期胃癌浆膜侵犯情况。

A quantitative model using multi-parameters in dual-energy CT to preoperatively predict serosal invasion in locally advanced gastric cancer.

作者信息

Liu Yiyang, Yuan Mengchen, Zhao Zihao, Zhao Shuai, Chen Xuejun, Fu Yang, Shi Mengwei, Chen Diansen, Hou Zongbin, Zhang Yongqiang, Du Juan, Zheng Yinshi, Liu Luhao, Li Yiming, Gao Beijun, Ji Qingyu, Li Jing, Gao Jianbo

机构信息

Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.

Henan International Joint Laboratory of Medical Imaging, Zhengzhou, China.

出版信息

Insights Imaging. 2024 Oct 31;15(1):264. doi: 10.1186/s13244-024-01844-z.

Abstract

OBJECTIVES

To develop and validate a quantitative model for predicting serosal invasion based on multi-parameters in preoperative dual-energy CT (DECT).

MATERIALS AND METHODS

A total of 342 LAGC patients who underwent gastrectomy and DECT from six centers were divided into one training cohort (TC), and two validation cohorts (VCs). Dual-phase enhanced DECT-derived iodine concentration (IC), water concentration, and monochromatic attenuation of lesions, along with clinical information, were measured and collected. The independent predictors among these characteristics for serosal invasion were screened with Spearman correlation analysis and logistic regression (LR) analysis. A quantitative model was developed based on LR classifier with fivefold cross-validation for predicting the serosal invasion in LAGC. We comprehensively tested the model and investigated its value in survival analysis.

RESULTS

A quantitative model was established using IC, 70 keV, 100 keV monochromatic attenuations in the venous phase, and CT-reported T4a, which were independent predictors of serosal invasion. The proposed model had the area-under-the-curve (AUC) values of 0.889 for TC and 0.860 and 0.837 for VCs. Subgroup analysis showed that the model could well discriminate T3 from T4a groups, and T2 from T4a groups in all cohorts (all p < 0.001). Besides, disease-free survival (DFS) (TC, p = 0.015; and VC1, p = 0.043) could be stratified using this quantitative model.

CONCLUSION

The proposed quantitative model using multi-parameters in DECT accurately predicts serosal invasion for LAGC and showed a significant correlation with the DFS of patients.

CRITICAL RELEVANCE STATEMENT

This quantitative model from dual-energy CT is a useful tool for predicting the serosal invasion of locally advanced gastric cancer.

KEY POINTS

Serosal invasion is a poor prognostic factor in locally advanced gastric cancer that may be predicted by DECT. DECT quantitative model for predicting serosal invasion was significantly and positively correlated with pathologic T stages. This quantitative model was associated with patient postoperative disease-free survival.

摘要

目的

基于术前双能CT(DECT)的多参数建立并验证预测浆膜侵犯的定量模型。

材料与方法

来自六个中心的342例行胃切除术和DECT检查的局部进展期胃癌(LAGC)患者被分为一个训练队列(TC)和两个验证队列(VC)。测量并收集双期增强DECT得出的病变碘浓度(IC)、水浓度、单色衰减以及临床信息。通过Spearman相关性分析和逻辑回归(LR)分析筛选出这些特征中与浆膜侵犯相关的独立预测因素。基于LR分类器开发一个定量模型,采用五折交叉验证来预测LAGC中的浆膜侵犯情况。我们全面测试了该模型并研究其在生存分析中的价值。

结果

利用静脉期的IC、70keV、100keV单色衰减以及CT报告的T4a建立了一个定量模型,这些是浆膜侵犯的独立预测因素。所提出的模型在训练队列中的曲线下面积(AUC)值为0.889,在验证队列1和验证队列2中的AUC值分别为0.860和0.837。亚组分析表明,该模型在所有队列中都能很好地区分T3组与T4a组以及T2组与T4a组(所有p<0.001)。此外,使用这个定量模型可以对无病生存期(DFS)进行分层(训练队列,p = 0.015;验证队列1,p = 0.043)。

结论

所提出的利用DECT多参数的定量模型能准确预测LAGC的浆膜侵犯情况,并与患者的DFS显著相关。

关键相关性声明

这个来自双能CT的定量模型是预测局部进展期胃癌浆膜侵犯的有用工具。

要点

浆膜侵犯是局部进展期胃癌的不良预后因素,可通过DECT进行预测。预测浆膜侵犯的DECT定量模型与病理T分期显著正相关。这个定量模型与患者术后无病生存期相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c05b/11528085/0d48f37ca5f8/13244_2024_1844_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验