Feng Jiangang, Wang Xi, Li Jia, Liang Haoming, Wen Wen, Alvianto Ezra, Qiu Cheng-Wei, Su Rui, Hou Yi
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, Singapore, 117574, Singapore.
Nat Commun. 2023 Sep 5;14(1):5392. doi: 10.1038/s41467-023-41149-1.
Tuning the composition of perovskites to approach the ideal bandgap raises the single-junction Shockley-Queisser efficiency limit of solar cells. The rapid development of narrow-bandgap formamidinium lead triiodide-based perovskites has brought perovskite single-junction solar cell efficiencies up to 26.1%. However, such compositional engineering route has reached the limit of the Goldschmidt tolerance factor. Here, we experimentally demonstrate a resonant perovskite solar cell that produces giant light absorption at the perovskite band edge with tiny absorption coefficients. We design multiple guide-mode resonances by momentum matching of waveguided modes and free-space light via Brillouin-zone folding, thus achieving an 18-nm band edge extension and 1.5 mA/cm improvement of the current. The external quantum efficiency spectrum reaches a plateau of above 93% across the spectral range of ~500 to 800 nm. This resonant nanophotonics strategy translates to a maximum EQE-integrated current of 26.0 mA/cm which is comparable to that of the champion single-crystal perovskite solar cell with a thickness of ~20 μm. Our findings break the ray-optics limit and open a new door to improve the efficiency of single-junction perovskite solar cells further when compositional engineering or other carrier managements are close to their limits.
调整钙钛矿的成分以接近理想带隙可提高太阳能电池的单结肖克利-奎塞尔效率极限。基于窄带隙甲脒铅三碘化物的钙钛矿的快速发展已使钙钛矿单结太阳能电池的效率提高到26.1%。然而,这种成分工程路线已达到戈尔德施密特容忍因子的极限。在此,我们通过实验展示了一种共振钙钛矿太阳能电池,它在钙钛矿带边产生具有微小吸收系数的巨大光吸收。我们通过布里渊区折叠使波导模式与自由空间光进行动量匹配来设计多个导模共振,从而实现了18纳米的带边扩展和1.5毫安/平方厘米的电流提升。外部量子效率谱在约500至800纳米的光谱范围内达到93%以上的平台。这种共振纳米光子学策略转化为26.0毫安/平方厘米的最大EQE积分电流,这与厚度约为20微米的最佳单晶钙钛矿太阳能电池相当。我们的发现突破了光线光学极限,并在成分工程或其他载流子管理接近其极限时,为进一步提高单结钙钛矿太阳能电池的效率打开了一扇新的大门。