Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Nature. 2021 Apr;592(7854):381-385. doi: 10.1038/s41586-021-03406-5. Epub 2021 Apr 5.
Metal halide perovskites of the general formula ABX-where A is a monovalent cation such as caesium, methylammonium or formamidinium; B is divalent lead, tin or germanium; and X is a halide anion-have shown great potential as light harvesters for thin-film photovoltaics. Among a large number of compositions investigated, the cubic α-phase of formamidinium lead triiodide (FAPbI) has emerged as the most promising semiconductor for highly efficient and stable perovskite solar cells, and maximizing the performance of this material in such devices is of vital importance for the perovskite research community. Here we introduce an anion engineering concept that uses the pseudo-halide anion formate (HCOO) to suppress anion-vacancy defects that are present at grain boundaries and at the surface of the perovskite films and to augment the crystallinity of the films. The resulting solar cell devices attain a power conversion efficiency of 25.6 per cent (certified 25.2 per cent), have long-term operational stability (450 hours) and show intense electroluminescence with external quantum efficiencies of more than 10 per cent. Our findings provide a direct route to eliminate the most abundant and deleterious lattice defects present in metal halide perovskites, providing a facile access to solution-processable films with improved optoelectronic performance.
钙钛矿型金属卤化物的通式为 ABX-其中 A 是一价阳离子,如铯、甲脒或甲铵;B 是二价的铅、锡或锗;而 X 是卤化物阴离子。它们在薄膜光伏方面表现出了作为光收集器的巨大潜力。在大量研究的成分中,立方α相的碘化甲脒铅(FAPbI)已经成为高效和稳定的钙钛矿太阳能电池最有前途的半导体,最大限度地提高这种材料在这些器件中的性能对钙钛矿研究界至关重要。在这里,我们引入了一种阴离子工程概念,使用拟卤化物阴离子甲酸盐(HCOO)来抑制钙钛矿薄膜中的晶界和表面处的阴离子空位缺陷,并提高薄膜的结晶度。由此产生的太阳能电池器件的功率转换效率达到 25.6%(经认证为 25.2%),具有长期的运行稳定性(450 小时),并显示出超过 10%的外部量子效率的强烈电致发光。我们的发现为消除金属卤化物钙钛矿中最丰富和最有害的晶格缺陷提供了一条直接途径,为改善光电性能的溶液处理薄膜提供了简便的途径。