Suppr超能文献

YAP-TEAD 复合物通过降低内质网应激促进衰老细胞存活。

The YAP-TEAD complex promotes senescent cell survival by lowering endoplasmic reticulum stress.

机构信息

Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.

Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.

出版信息

Nat Aging. 2023 Oct;3(10):1237-1250. doi: 10.1038/s43587-023-00480-4. Epub 2023 Sep 4.

Abstract

Sublethal cell damage can trigger senescence, a complex adaptive program characterized by growth arrest, resistance to apoptosis and a senescence-associated secretory phenotype (SASP). Here, a whole-genome CRISPR knockout screen revealed that proteins in the YAP-TEAD pathway influenced senescent cell viability. Accordingly, treating senescent cells with a drug that inhibited this pathway, verteporfin (VPF), selectively triggered apoptotic cell death largely by derepressing DDIT4, which in turn inhibited mTOR. Reducing mTOR function in senescent cells diminished endoplasmic reticulum (ER) biogenesis, triggering ER stress and apoptosis due to high demands on ER function by the SASP. Importantly, VPF treatment decreased the numbers of senescent cells in the organs of old mice and mice exhibiting doxorubicin-induced senescence. Moreover, VPF treatment reduced immune cell infiltration and pro-fibrotic transforming growth factor-β signaling in aging mouse lungs, improving tissue homeostasis. We present an alternative senolytic strategy that eliminates senescent cells by hindering ER activity required for SASP production.

摘要

亚致死性细胞损伤可引发衰老,这是一种复杂的适应性程序,其特征是生长停滞、抗细胞凋亡和衰老相关分泌表型(SASP)。在这里,全基因组 CRISPR 敲除筛选揭示了 YAP-TEAD 通路中的蛋白影响衰老细胞活力。相应地,用抑制该通路的药物——维替泊芬(VPF)处理衰老细胞,可选择性地通过去抑制 DDIT4 来触发凋亡性细胞死亡,而 DDIT4 反过来又抑制 mTOR。降低衰老细胞中的 mTOR 功能会减少内质网(ER)的生物发生,由于 SASP 对 ER 功能的高需求,导致 ER 应激和凋亡。重要的是,VPF 处理减少了老年小鼠和表现出多柔比星诱导衰老的小鼠器官中的衰老细胞数量。此外,VPF 处理减少了衰老小鼠肺部中的免疫细胞浸润和促纤维化转化生长因子-β信号,改善了组织内稳态。我们提出了一种替代的衰老细胞溶解策略,通过阻碍 SASP 产生所需的 ER 活性来消除衰老细胞。

相似文献

1
The YAP-TEAD complex promotes senescent cell survival by lowering endoplasmic reticulum stress.
Nat Aging. 2023 Oct;3(10):1237-1250. doi: 10.1038/s43587-023-00480-4. Epub 2023 Sep 4.
2
A BDNF-TrkB autocrine loop enhances senescent cell viability.
Nat Commun. 2022 Oct 20;13(1):6228. doi: 10.1038/s41467-022-33709-8.
3
Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism.
Aging Cell. 2017 Jun;16(3):564-574. doi: 10.1111/acel.12587. Epub 2017 Mar 31.
4
mTOR Activity and Autophagy in Senescent Cells, a Complex Partnership.
Int J Mol Sci. 2021 Jul 29;22(15):8149. doi: 10.3390/ijms22158149.
9
Senescence and the SASP: many therapeutic avenues.
Genes Dev. 2020 Dec 1;34(23-24):1565-1576. doi: 10.1101/gad.343129.120.

引用本文的文献

1
A review of the participation of DDIT4 in the tumor immune microenvironment through inhibiting PI3K-Akt/mTOR pathway.
Front Oncol. 2025 Aug 18;15:1595463. doi: 10.3389/fonc.2025.1595463. eCollection 2025.
4
Cellular senescence in age-related musculoskeletal diseases.
Front Med. 2025 May 2. doi: 10.1007/s11684-025-1125-7.
5
Anti-senescence therapies: a new concept to address cardiovascular disease.
Cardiovasc Res. 2025 May 23;121(5):730-747. doi: 10.1093/cvr/cvaf030.
6
UFMylation maintains YAP stability to promote vascular endothelial cell senescence.
iScience. 2025 Jan 21;28(2):111854. doi: 10.1016/j.isci.2025.111854. eCollection 2025 Feb 21.
7
E6AP is essential for the proliferation of HPV-positive cancer cells by preventing senescence.
PLoS Pathog. 2025 Feb 7;21(2):e1012914. doi: 10.1371/journal.ppat.1012914. eCollection 2025 Feb.
8
Enhancing immunity during ageing by targeting interactions within the tissue environment.
Nat Rev Drug Discov. 2025 Apr;24(4):300-315. doi: 10.1038/s41573-024-01126-9. Epub 2025 Jan 28.
9
The Hippo Signaling Pathway Manipulates Cellular Senescence.
Cells. 2024 Dec 26;14(1):13. doi: 10.3390/cells14010013.
10
Senescence as a therapeutic target in cancer and age-related diseases.
Nat Rev Drug Discov. 2025 Jan;24(1):57-71. doi: 10.1038/s41573-024-01074-4. Epub 2024 Nov 15.

本文引用的文献

1
Recent insights into the crosstalk between senescent cells and CD8 T lymphocytes.
NPJ Aging. 2023 Apr 4;9(1):8. doi: 10.1038/s41514-023-00105-5.
2
MAPKs in the early steps of senescence implemEMTation.
Front Cell Dev Biol. 2023 Mar 16;11:1083401. doi: 10.3389/fcell.2023.1083401. eCollection 2023.
3
Hallmarks of aging: An expanding universe.
Cell. 2023 Jan 19;186(2):243-278. doi: 10.1016/j.cell.2022.11.001. Epub 2023 Jan 3.
4
A BDNF-TrkB autocrine loop enhances senescent cell viability.
Nat Commun. 2022 Oct 20;13(1):6228. doi: 10.1038/s41467-022-33709-8.
5
Cellular senescence and senolytics: the path to the clinic.
Nat Med. 2022 Aug;28(8):1556-1568. doi: 10.1038/s41591-022-01923-y. Epub 2022 Aug 11.
6
YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS-STING.
Nature. 2022 Jul;607(7920):790-798. doi: 10.1038/s41586-022-04924-6. Epub 2022 Jun 29.
7
Senescent cells limit p53 activity via multiple mechanisms to remain viable.
Nat Commun. 2022 Jun 28;13(1):3722. doi: 10.1038/s41467-022-31239-x.
8
Histone deacetylase 4 reverses cellular senescence via DDIT4 in dermal fibroblasts.
Aging (Albany NY). 2022 Jun 9;14(11):4653-4672. doi: 10.18632/aging.204118.
9
A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis.
Nat Cell Biol. 2022 May;24(5):766-782. doi: 10.1038/s41556-022-00894-z. Epub 2022 May 2.
10
Early SRC activation skews cell fate from apoptosis to senescence.
Sci Adv. 2022 Apr 8;8(14):eabm0756. doi: 10.1126/sciadv.abm0756.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验