Suppr超能文献

使用单试次错误相关脑电位解码归因。

Decoding agency attribution using single trial error-related brain potentials.

机构信息

Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-IDIBELL], Barcelona, Spain.

Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.

出版信息

Psychophysiology. 2024 Jan;61(1):e14434. doi: 10.1111/psyp.14434. Epub 2023 Sep 5.

Abstract

Being able to distinguish between self and externally generated actions is a key factor influencing learning and adaptive behavior. Previous literature has highlighted that whenever a person makes or perceives an error, a series of error-related potentials (ErrPs) can be detected in the electroencephalographic (EEG) signal, such as the error-related negativity (ERN) component. Recently, ErrPs have gained a lot of interest for the use in brain-computer interface (BCI) applications, which give the user the ability to communicate by means of decoding his/her brain activity. Here, we explored the feasibility of employing a support vector machine classifier to accurately disentangle self-agency errors from other-agency errors from the EEG signal at a single-trial level in a sample of 23 participants. Our results confirmed the viability of correctly disentangling self/internal versus other/external agency-error attributions at different stages of brain processing based on the latency and the spatial topographical distribution of key ErrP features, namely, the ERN and P600 components, respectively. These results offer a new perspective on how to distinguish self versus externally generated errors providing new potential implementations on BCI systems.

摘要

能够区分自我和外部产生的动作是影响学习和适应行为的关键因素。先前的文献强调,每当一个人犯错或感知到错误时,在脑电图(EEG)信号中都可以检测到一系列与错误相关的电位(ErrPs),例如错误相关负波(ERN)成分。最近,ErrPs 在脑机接口(BCI)应用中引起了广泛关注,它使使用者能够通过解码其大脑活动进行交流。在这里,我们探索了在 23 名参与者的样本中,使用支持向量机分类器在单个试验水平上,从 EEG 信号中准确地区分自我代理错误与其他代理错误的可行性。我们的结果证实,基于关键 ErrP 特征(即 ERN 和 P600 成分)的潜伏期和空间拓扑分布,可以在不同的大脑处理阶段正确地区分自我/内部与其他/外部代理错误归因。这些结果为如何区分自我与外部产生的错误提供了新的视角,并为 BCI 系统提供了新的潜在实现方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验