Suppr超能文献

基于深度学习的新生血管性年龄相关性黄斑变性关键光学相干断层扫描特征的自动量化

Deep-learning based automated quantification of critical optical coherence tomography features in neovascular age-related macular degeneration.

作者信息

Borrelli Enrico, Oakley Jonathan D, Iaccarino Giorgio, Russakoff Daniel B, Battista Marco, Grosso Domenico, Borghesan Federico, Barresi Costanza, Sacconi Riccardo, Bandello Francesco, Querques Giuseppe

机构信息

Vita-Salute San Raffaele University Milan, Milan, Italy.

IRCCS San Raffaele Scientific Institute, Milan, Italy.

出版信息

Eye (Lond). 2024 Feb;38(3):537-544. doi: 10.1038/s41433-023-02720-8. Epub 2023 Sep 5.

Abstract

PURPOSE

To validate a deep learning algorithm for automated intraretinal fluid (IRF), subretinal fluid (SRF) and neovascular pigment epithelium detachment (nPED) segmentations in neovascular age-related macular degeneration (nAMD).

METHODS

In this IRB-approved study, optical coherence tomography (OCT) data from 50 patients (50 eyes) with exudative nAMD were retrospectively analysed. Two models, A1 and A2, were created based on gradings from two masked readers, R1 and R2. Area under the curve (AUC) values gauged detection performance, and quantification between readers and models was evaluated using Dice and correlation (R) coefficients.

RESULTS

The deep learning-based algorithms had high accuracies for all fluid types between all models and readers: per B-scan IRF AUCs were 0.953, 0.932, 0.990, 0.942 for comparisons A1-R1, A1-R2, A2-R1 and A2-R2, respectively; SRF AUCs were 0.984, 0.974, 0.987, 0.979; and nPED AUCs were 0.963, 0.969, 0.961 and 0.966. Similarly, the R coefficients for IRF were 0.973, 0.974, 0.889 and 0.973; SRF were 0.928, 0.964, 0.965 and 0.998; and nPED were 0.908, 0.952, 0.839 and 0.905. The Dice coefficients for IRF averaged 0.702, 0.667, 0.649 and 0.631; for SRF were 0.699, 0.651, 0.692 and 0.701; and for nPED were 0.636, 0.703, 0.719 and 0.775. In an inter-observer comparison between manual readers R1 and R2, the R coefficient was 0.968 for IRF, 0.960 for SRF, and 0.906 for nPED, with Dice coefficients of 0.692, 0.660 and 0.784 for the same features.

CONCLUSIONS

Our deep learning-based method applied on nAMD can segment critical OCT features with performance akin to manual grading.

摘要

目的

验证一种深度学习算法用于对新生血管性年龄相关性黄斑变性(nAMD)中的视网膜内液(IRF)、视网膜下液(SRF)和新生血管性色素上皮脱离(nPED)进行自动分割。

方法

在这项经机构审查委员会(IRB)批准的研究中,对50例(50只眼)渗出性nAMD患者的光学相干断层扫描(OCT)数据进行回顾性分析。基于两名盲法阅片者R1和R2的分级创建了两个模型A1和A2。曲线下面积(AUC)值衡量检测性能,并使用Dice系数和相关系数(R)评估阅片者与模型之间的定量关系。

结果

基于深度学习的算法在所有模型和阅片者之间对所有液体类型均具有较高的准确性:每次B扫描中,IRF的AUC值在比较A1 - R1、A1 - R2、A2 - R1和A2 - R2时分别为0.953、0.932、0.990、0.942;SRF的AUC值分别为0.984、0.974、0.987、0.979;nPED的AUC值分别为0.963、0.969、0.961和0.966。同样,IRF的R系数分别为0.973、0.974、0.889和0.973;SRF的R系数分别为0.928、0.964、0.965和0.998;nPED的R系数分别为0.908、0.952、0.839和0.905。IRF的Dice系数平均为0.702、0.667、0.649和0.631;SRF的Dice系数分别为0.699、0.651、0.692和0.701;nPED的Dice系数分别为0.636、0.703、0.719和0.775。在手动阅片者R1和R2之间的观察者间比较中,IRF的R系数为0.968,SRF为0.960,nPED为0.906,相同特征的Dice系数分别为0.692、0.660和0.784。

结论

我们应用于nAMD的基于深度学习的方法能够分割关键的OCT特征,其性能与手动分级相似。

相似文献

3
Performance of retinal fluid monitoring in OCT imaging by automated deep learning versus human expert grading in neovascular AMD.
Eye (Lond). 2023 Dec;37(18):3793-3800. doi: 10.1038/s41433-023-02615-8. Epub 2023 Jun 13.
6
Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning.
Ophthalmology. 2021 May;128(5):693-705. doi: 10.1016/j.ophtha.2020.09.025. Epub 2020 Sep 24.
9
Application of Automated Quantification of Fluid Volumes to Anti-VEGF Therapy of Neovascular Age-Related Macular Degeneration.
Ophthalmology. 2020 Sep;127(9):1211-1219. doi: 10.1016/j.ophtha.2020.03.010. Epub 2020 Mar 16.

引用本文的文献

1
Deep Learning Model for Automated Classification of Macular Neovascularization Subtypes in AMD.
Invest Ophthalmol Vis Sci. 2025 Jul 1;66(9):55. doi: 10.1167/iovs.66.9.55.
2
Recent Optical Coherence Tomography (OCT) Innovations for Increased Accessibility and Remote Surveillance.
Bioengineering (Basel). 2025 Apr 23;12(5):441. doi: 10.3390/bioengineering12050441.
3
Discriminative, generative artificial intelligence, and foundation models in retina imaging.
Taiwan J Ophthalmol. 2024 Nov 28;14(4):473-485. doi: 10.4103/tjo.TJO-D-24-00064. eCollection 2024 Oct-Dec.
4
Deep learning model for automatic detection of different types of microaneurysms in diabetic retinopathy.
Eye (Lond). 2025 Feb;39(3):570-577. doi: 10.1038/s41433-024-03585-1. Epub 2025 Jan 9.
6
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.
7
Deep Learning in Neovascular Age-Related Macular Degeneration.
Medicina (Kaunas). 2024 Jun 17;60(6):990. doi: 10.3390/medicina60060990.

本文引用的文献

3
FLUID-BASED VISUAL PROGNOSTICATION IN TYPE 3 MACULAR NEOVASCULARIZATION-FLIP-3 STUDY.
Retina. 2022 Jan 1;42(1):107-113. doi: 10.1097/IAE.0000000000003261.
6
Quantification of Key Retinal Features in Early and Late Age-Related Macular Degeneration Using Deep Learning.
Am J Ophthalmol. 2021 Jun;226:1-12. doi: 10.1016/j.ajo.2020.12.034. Epub 2021 Jan 8.
7
Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning.
Ophthalmology. 2021 May;128(5):693-705. doi: 10.1016/j.ophtha.2020.09.025. Epub 2020 Sep 24.
8
Macular Morphology and Visual Acuity in Year Five of the Comparison of Age-related Macular Degeneration Treatments Trials.
Ophthalmology. 2019 Feb;126(2):252-260. doi: 10.1016/j.ophtha.2018.08.035. Epub 2018 Sep 3.
9
Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning.
Ophthalmology. 2018 Apr;125(4):549-558. doi: 10.1016/j.ophtha.2017.10.031. Epub 2017 Dec 8.
10
A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration.
Prog Retin Eye Res. 2016 Jan;50:1-24. doi: 10.1016/j.preteyeres.2015.07.007. Epub 2015 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验