Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China.
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China.
Small. 2024 Jan;20(2):e2305672. doi: 10.1002/smll.202305672. Epub 2023 Sep 5.
The sensing performance of DNAzymes in live cells is tremendously hampered by the inefficient and inhomogeneous delivery of DNAzyme probes and their incontrollable off-site activation, originating from their susceptibility to nuclease digestion. This requires the development of a more compact and robust DNAzyme-delivering system with site-specific DNAzyme activation property. Herein, a highly compact and robust Zn@DDz nanoplatform is constructed by integrating the unimolecular microRNA-responsive DNA-cleaving DNAzyme (DDz) probe with the requisite DNAzyme Zn -ion cofactors, and the amplified intracellular imaging of microRNA via the spatiotemporally programmed disassembly of Zn@DDz nanoparticles is achieved. The multifunctional Zn@DDz nanoplatform is simply composed of a structurally blocked self-hydrolysis DDz probe and the inorganic Zn -ion bridge, with high loading capacity, and can effectively deliver the initially catalytic inert DDz probe and Zn into living cells with enhanced stabilities. Upon their entry into the acidic microenvironment of living cells, the self-sufficient Zn@DDz nanoparticle is disassembled to release DDz probe and simultaneously supply Zn -ion cofactors. Then, endogenous microRNA-21 catalyzes the reconfiguration and activation of DDz for generating the amplified readout signal with multiply guaranteed imaging performance. Thus, this work paves an effective way for promoting DNAzyme-based biosensing systems in living cells, and shows great promise in clinical diagnosis.
DNA zyme 在活细胞中的传感性能受到 DNAzyme 探针传递效率低且不均匀以及其不可控的非原位激活的极大阻碍,这源于它们易被核酸酶消化。这就需要开发一种更紧凑、更稳健的 DNAzyme 传递系统,具有特定部位的 DNAzyme 激活特性。在此,通过将单分子 miRNA 反应性 DNA 切割 DNAzyme(DDz)探针与必需的 DNAzyme Zn 离子辅因子集成,构建了一种高度紧凑和稳健的 Zn@DDz 纳米平台,并通过 Zn@DDz 纳米颗粒的时空程序组装实现了 miRNA 的放大细胞内成像。多功能 Zn@DDz 纳米平台由结构封锁的自水解 DDz 探针和无机 Zn 离子桥简单组成,具有高载药量,并能有效递送至具有增强稳定性的活细胞中最初催化惰性的 DDz 探针和 Zn。进入活细胞的酸性微环境后,自给自足的 Zn@DDz 纳米颗粒会解体,释放 DDz 探针并同时提供 Zn 离子辅因子。然后,内源性 microRNA-21 催化 DDz 的重新配置和激活,产生具有多重保证成像性能的放大读出信号。因此,这项工作为促进活细胞中基于 DNAzyme 的生物传感系统铺平了道路,并在临床诊断中显示出巨大的应用前景。