Suppr超能文献

梁理论预测了虹鳟鱼(Oncorhynchus mykiss)进食过程中的肌肉变形和脊柱弯曲。

Beam theory predicts muscle deformation and vertebral curvature during feeding in rainbow trout (Oncorhynchus mykiss).

机构信息

Department of Biology, Providence College, Providence, RI 02918, USA.

Department of Biology, Tufts University, Medford, MA 02155, USA.

出版信息

J Exp Biol. 2023 Oct 15;226(20). doi: 10.1242/jeb.245788. Epub 2023 Oct 31.

Abstract

Muscle shortening underpins most skeletal motion and ultimately animal performance. Most animal muscle generates its greatest mechanical output over a small, homogeneous range of shortening magnitudes and speeds. However, homogeneous muscle shortening is difficult to achieve for swimming fish because the whole body deforms like a bending beam: as the vertebral column flexes laterally, longitudinal muscle strain increases along a medio-lateral gradient. Similar dorsoventral strain gradients have been identified as the vertebral column flexes dorsally during feeding in at least one body location in one fish. If fish bodies also deform like beams during dorsoventral feeding motions, this would suggest the dorsal body (epaxial) muscles must homogenize both dorsoventral and mediolateral strain gradients. We tested this hypothesis by measuring curvature of the anterior vertebral column with XROMM and muscle shortening in 14 epaxial subregions with fluoromicrometry during feeding in rainbow trout (Oncorhynchus mykiss). We compared measured strain with the predicted strain based on beam theory's curvature-strain relationship. Trout flexed the vertebrae dorsally and laterally during feeding strikes, yet when flexion in both planes was included, the strain predicted by beam theory was strongly and significantly correlated with measured strain (P<0.01, R2=0.60). Beam theory accurately predicted strain (slope=1.15, compared with ideal slope=1) across most muscle subregions, confirming that epaxial muscles experience dorsoventral and mediolateral gradients in longitudinal strain. Establishing this deformation-curvature relationship is a crucial step to understanding how these muscles overcome orthogonal strain gradients to produce powerful feeding and swimming behaviours.

摘要

肌肉缩短是大多数骨骼运动的基础,最终决定了动物的表现。大多数动物肌肉在一个小的、均匀的缩短幅度和速度范围内产生最大的机械输出。然而,对于游泳的鱼类来说,均匀的肌肉缩短是很难实现的,因为整个身体像弯曲的梁一样变形:当脊柱侧向弯曲时,纵向肌肉的应变会沿着一个中侧梯度增加。在至少一种鱼类的一个身体部位,当脊柱背侧弯曲时,也已经确定了类似的背腹应变梯度。如果鱼类的身体在背腹方向的进食运动中也像梁一样变形,这将表明背侧身体(轴上)肌肉必须使背腹和中侧应变梯度均匀化。我们通过 XROMM 测量了虹鳟(Oncorhynchus mykiss)在进食过程中的前脊柱的曲率,并通过荧光微测法在 14 个轴上亚区测量了肌肉缩短,以验证这个假设。我们将测量的应变与基于梁理论的曲率-应变关系预测的应变进行了比较。在进食过程中,虹鳟的脊椎会背侧和侧向弯曲,但当包括两个平面的弯曲时,梁理论预测的应变与测量的应变高度显著相关(P<0.01,R2=0.60)。在大多数肌肉亚区,梁理论都能准确地预测应变(斜率=1.15,理想斜率=1),这证实了轴上肌肉经历了背腹和中侧的纵向应变梯度。建立这种变形-曲率关系是理解这些肌肉如何克服正交应变梯度以产生强大的进食和游泳行为的关键步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/657c/10629686/b2cffd057af8/jexbio-226-245788-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验