van Dijk Myrthe J, van Oirschot Brigitte A, Harrison Alexander N, Recktenwald Steffen M, Qiao Min, Stommen Amaury, Cloos Anne-Sophie, Vanderroost Juliette, Terrasi Romano, Dey Kuntal, Bos Jennifer, Rab Minke A E, Bogdanova Anna, Minetti Giampaolo, Muccioli Giulio G, Tyteca Donatienne, Egée Stéphane, Kaestner Lars, Molday Robert S, van Beers Eduard J, van Wijk Richard
Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Center for Benign Hematology, Thrombosis and Hemostasis-Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Am J Hematol. 2023 Dec;98(12):1877-1887. doi: 10.1002/ajh.27088. Epub 2023 Sep 6.
Adenosine Triphosphatase (ATPase) Phospholipid Transporting 11C gene (ATP11C) encodes the major phosphatidylserine (PS) flippase in human red blood cells (RBCs). Flippases actively transport phospholipids (e.g., PS) from the outer to the inner leaflet to establish and maintain phospholipid asymmetry of the lipid bilayer of cell membranes. This asymmetry is crucial for survival since externalized PS triggers phagocytosis by splenic macrophages. Here we report on pathophysiological consequences of decreased flippase activity, prompted by a patient with hemolytic anemia and hemizygosity for a novel c.2365C > T p.(Leu789Phe) missense variant in ATP11C. ATP11C protein expression was strongly reduced by 58% in patient-derived RBC ghosts. Furthermore, functional characterization showed only 26% PS flippase activity. These results were confirmed by recombinant mutant ATP11C protein expression in HEK293T cells, which was decreased to 27% compared to wild type, whereas PS-stimulated ATPase activity was decreased by 57%. Patient RBCs showed a mild increase in PS surface exposure when compared to control RBCs, which further increased in the most dense RBCs after RBC storage stress. The increase in PS was not due to higher global membrane content of PS or other phospholipids. In contrast, membrane lipid lateral distribution showed increased abundance of cholesterol-enriched domains in RBC low curvature areas. Finally, more dense RBCs and subtle changes in RBC morphology under flow hint toward alterations in flow behavior of ATP11C-deficient RBCs. Altogether, ATP11C deficiency is the likely cause of hemolytic anemia in our patient, thereby underlining the physiological role and relevance of this flippase in human RBCs.
三磷酸腺苷酶(ATP酶)磷脂转运11C基因(ATP11C)编码人类红细胞(RBC)中的主要磷脂酰丝氨酸(PS)翻转酶。翻转酶将磷脂(如PS)从细胞膜外层主动转运至内层,以建立并维持细胞膜脂质双层的磷脂不对称性。这种不对称性对细胞存活至关重要,因为外化的PS会触发脾巨噬细胞的吞噬作用。在此,我们报告了一名溶血性贫血患者因ATP11C基因发生新型c.2365C>T p.(Leu789Phe)错义变异而导致半合子状态,进而引发翻转酶活性降低的病理生理后果。在患者来源的红细胞膜空壳中,ATP11C蛋白表达显著降低了58%。此外,功能特性分析显示PS翻转酶活性仅为26%。在HEK293T细胞中表达重组突变ATP11C蛋白也证实了这些结果,与野生型相比,其表达降低至27%,而PS刺激的ATP酶活性降低了57%。与对照红细胞相比,患者红细胞的PS表面暴露轻度增加,在红细胞储存应激后,最致密的红细胞中PS表面暴露进一步增加。PS的增加并非由于PS或其他磷脂的整体膜含量升高。相反,膜脂侧向分布显示红细胞低曲率区域富含胆固醇的结构域丰度增加。最后,更致密的红细胞以及流动状态下红细胞形态的细微变化提示ATP11C缺陷型红细胞的流动行为发生了改变。总之,ATP11C缺陷可能是我们这名患者溶血性贫血的病因,从而突出了这种翻转酶在人类红细胞中的生理作用及相关性。