Suppr超能文献

scAce:一种用于单细胞基因表达数据的自适应嵌入和聚类方法。

scAce: an adaptive embedding and clustering method for single-cell gene expression data.

机构信息

School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China.

Department of Statistics, University of California, Riverside, Riverside 92521, United States.

出版信息

Bioinformatics. 2023 Sep 2;39(9). doi: 10.1093/bioinformatics/btad546.

Abstract

MOTIVATION

Since the development of single-cell RNA sequencing (scRNA-seq) technologies, clustering analysis of single-cell gene expression data has been an essential tool for distinguishing cell types and identifying novel cell types. Even though many methods have been available for scRNA-seq clustering analysis, the majority of them are constrained by the requirement on predetermined cluster numbers or the dependence on selected initial cluster assignment.

RESULTS

In this article, we propose an adaptive embedding and clustering method named scAce, which constructs a variational autoencoder to simultaneously learn cell embeddings and cluster assignments. In the scAce method, we develop an adaptive cluster merging approach which achieves improved clustering results without the need to estimate the number of clusters in advance. In addition, scAce provides an option to perform clustering enhancement, which can update and enhance cluster assignments based on previous clustering results from other methods. Based on computational analysis of both simulated and real datasets, we demonstrate that scAce outperforms state-of-the-art clustering methods for scRNA-seq data, and achieves better clustering accuracy and robustness.

AVAILABILITY AND IMPLEMENTATION

The scAce package is implemented in python 3.8 and is freely available from https://github.com/sldyns/scAce.

摘要

动机

自单细胞 RNA 测序 (scRNA-seq) 技术发展以来,单细胞基因表达数据的聚类分析一直是区分细胞类型和识别新型细胞类型的重要工具。尽管已经有许多方法可用于 scRNA-seq 聚类分析,但大多数方法都受到预定聚类数量的要求或对选定初始聚类分配的依赖的限制。

结果

在本文中,我们提出了一种名为 scAce 的自适应嵌入和聚类方法,该方法构建了一个变分自动编码器,同时学习细胞嵌入和聚类分配。在 scAce 方法中,我们开发了一种自适应聚类合并方法,无需预先估计聚类数量即可实现改进的聚类结果。此外,scAce 提供了一种聚类增强选项,可基于其他方法的先前聚类结果进行更新和增强聚类分配。基于对模拟和真实数据集的计算分析,我们证明 scAce 优于 scRNA-seq 数据的最新聚类方法,并且实现了更好的聚类准确性和鲁棒性。

可用性和实现

scAce 包是用 python 3.8 实现的,可以从 https://github.com/sldyns/scAce 免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2480/10500084/bfab154cfcf0/btad546f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验