文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

scGAC:一种用于聚类单细胞 RNA-seq 数据的图注意力架构。

scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.

机构信息

Key Laboratory of Machine Perception (MOE), School of Artificial Intelligence, Peking University, Beijing 100871, China.

出版信息

Bioinformatics. 2022 Apr 12;38(8):2187-2193. doi: 10.1093/bioinformatics/btac099.


DOI:10.1093/bioinformatics/btac099
PMID:35176138
Abstract

MOTIVATION: Emerging single-cell RNA sequencing (scRNA-seq) technology empowers biological research at cellular level. One of the most crucial scRNA-seq data analyses is clustering single cells into subpopulations. However, the high variability, high sparsity and high dimensionality of scRNA-seq data pose lots of challenges for clustering analysis. Although many single-cell clustering methods have been recently developed, few of them fully exploit latent relationship among cells, thus leading to suboptimal clustering results. RESULTS: Here, we propose a novel unsupervised clustering method, scGAC (single-cell Graph Attentional Clustering), for scRNA-seq data. scGAC firstly constructs a cell graph and refines it by network denoising. Then, it learns clustering-friendly representation of cells through a graph attentional autoencoder, which propagates information across cells with different weights and captures latent relationship among cells. Finally, scGAC adopts a self-optimizing method to obtain the cell clusters. Experiments on 16 real scRNA-seq datasets show that scGAC achieves excellent performance and outperforms existing state-of-art single-cell clustering methods. AVAILABILITY AND IMPLEMENTATION: Python implementation of scGAC is available at Github (https://github.com/Joye9285/scGAC) and Figshare (https://figshare.com/articles/software/scGAC/19091348). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要

动机:新兴的单细胞 RNA 测序 (scRNA-seq) 技术使细胞水平的生物学研究成为可能。scRNA-seq 数据分析中最关键的一项是将单细胞聚类成亚群。然而,scRNA-seq 数据的高度可变性、高度稀疏性和高维性给聚类分析带来了诸多挑战。尽管最近已经开发了许多单细胞聚类方法,但它们很少能够充分利用细胞之间的潜在关系,从而导致聚类结果不理想。

结果:在这里,我们提出了一种新的无监督聚类方法,scGAC(单细胞图注意聚类),用于 scRNA-seq 数据。scGAC 首先构建细胞图,并通过网络去噪对其进行优化。然后,它通过图注意自动编码器学习细胞的聚类友好表示,通过不同的权重在细胞之间传播信息,并捕获细胞之间的潜在关系。最后,scGAC 采用自优化方法获得细胞簇。在 16 个真实的 scRNA-seq 数据集上的实验表明,scGAC 具有优异的性能,优于现有的单细胞聚类方法。

可用性和实现:scGAC 的 Python 实现可在 Github(https://github.com/Joye9285/scGAC)和 Figshare(https://figshare.com/articles/software/scGAC/19091348)上获得。

补充信息:补充数据可在生物信息学在线获得。

相似文献

[1]
scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.

Bioinformatics. 2022-4-12

[2]
scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.

Bioinformatics. 2023-2-14

[3]
scGCL: an imputation method for scRNA-seq data based on graph contrastive learning.

Bioinformatics. 2023-3-1

[4]
GNN-based embedding for clustering scRNA-seq data.

Bioinformatics. 2022-1-27

[5]
An optimized graph-based structure for single-cell RNA-seq cell-type classification based on non-linear dimension reduction.

BMC Genomics. 2023-5-2

[6]
Attention-based deep clustering method for scRNA-seq cell type identification.

PLoS Comput Biol. 2023-11

[7]
Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.

Brief Bioinform. 2022-3-10

[8]
scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data.

Comput Biol Med. 2023-9

[9]
JLONMFSC: Clustering scRNA-seq data based on joint learning of non-negative matrix factorization and subspace clustering.

Methods. 2024-2

[10]
scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering.

Int J Mol Sci. 2024-5-29

引用本文的文献

[1]
Clustering Single-Cell RNA-Seq Data with Low-Rank Matrix Factorization and Local Graph Regularization.

Interdiscip Sci. 2025-9-2

[2]
Deep clustering of single-cell RNA-seq using adversarial graph contrastive learning.

Brief Bioinform. 2025-7-2

[3]
IGCLAPS: an interpretable graph contrastive learning method with adaptive positive sampling for scRNA-seq data analysis.

Bioinformatics. 2025-7-21

[4]
iVAE: an interpretable representation learning framework enhances clustering performance for single-cell data.

BMC Biol. 2025-7-15

[5]
Differentiable graph clustering with structural grouping for single-cell RNA-seq data.

Bioinformatics. 2025-7-1

[6]
Graph neural networks for single-cell omics data: a review of approaches and applications.

Brief Bioinform. 2025-3-4

[7]
Single-Cell Hi-C Technologies and Computational Data Analysis.

Adv Sci (Weinh). 2025-3

[8]
scHNTL: single-cell RNA-seq data clustering augmented by high-order neighbors and triplet loss.

Bioinformatics. 2025-2-4

[9]
A generative deep neural network for pan-digestive tract cancer survival analysis.

BioData Min. 2025-1-27

[10]
scVAG: Unified single-cell clustering via variational-autoencoder integration with Graph Attention Autoencoder.

Heliyon. 2024-11-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索