Key Laboratory of Machine Perception (MOE), School of Artificial Intelligence, Peking University, Beijing 100871, China.
Bioinformatics. 2022 Apr 12;38(8):2187-2193. doi: 10.1093/bioinformatics/btac099.
MOTIVATION: Emerging single-cell RNA sequencing (scRNA-seq) technology empowers biological research at cellular level. One of the most crucial scRNA-seq data analyses is clustering single cells into subpopulations. However, the high variability, high sparsity and high dimensionality of scRNA-seq data pose lots of challenges for clustering analysis. Although many single-cell clustering methods have been recently developed, few of them fully exploit latent relationship among cells, thus leading to suboptimal clustering results. RESULTS: Here, we propose a novel unsupervised clustering method, scGAC (single-cell Graph Attentional Clustering), for scRNA-seq data. scGAC firstly constructs a cell graph and refines it by network denoising. Then, it learns clustering-friendly representation of cells through a graph attentional autoencoder, which propagates information across cells with different weights and captures latent relationship among cells. Finally, scGAC adopts a self-optimizing method to obtain the cell clusters. Experiments on 16 real scRNA-seq datasets show that scGAC achieves excellent performance and outperforms existing state-of-art single-cell clustering methods. AVAILABILITY AND IMPLEMENTATION: Python implementation of scGAC is available at Github (https://github.com/Joye9285/scGAC) and Figshare (https://figshare.com/articles/software/scGAC/19091348). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
动机:新兴的单细胞 RNA 测序 (scRNA-seq) 技术使细胞水平的生物学研究成为可能。scRNA-seq 数据分析中最关键的一项是将单细胞聚类成亚群。然而,scRNA-seq 数据的高度可变性、高度稀疏性和高维性给聚类分析带来了诸多挑战。尽管最近已经开发了许多单细胞聚类方法,但它们很少能够充分利用细胞之间的潜在关系,从而导致聚类结果不理想。
结果:在这里,我们提出了一种新的无监督聚类方法,scGAC(单细胞图注意聚类),用于 scRNA-seq 数据。scGAC 首先构建细胞图,并通过网络去噪对其进行优化。然后,它通过图注意自动编码器学习细胞的聚类友好表示,通过不同的权重在细胞之间传播信息,并捕获细胞之间的潜在关系。最后,scGAC 采用自优化方法获得细胞簇。在 16 个真实的 scRNA-seq 数据集上的实验表明,scGAC 具有优异的性能,优于现有的单细胞聚类方法。
可用性和实现:scGAC 的 Python 实现可在 Github(https://github.com/Joye9285/scGAC)和 Figshare(https://figshare.com/articles/software/scGAC/19091348)上获得。
补充信息:补充数据可在生物信息学在线获得。
Bioinformatics. 2022-4-12
Bioinformatics. 2023-3-1
Bioinformatics. 2022-1-27
PLoS Comput Biol. 2023-11
Brief Bioinform. 2025-7-2
Bioinformatics. 2025-7-1
Brief Bioinform. 2025-3-4
Adv Sci (Weinh). 2025-3
Bioinformatics. 2025-2-4
BioData Min. 2025-1-27