文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习在临床微生物学和传染病中的应用。

The application of machine learning in clinical microbiology and infectious diseases.

作者信息

Xu Cheng, Zhao Ling-Yun, Ye Cun-Si, Xu Ke-Chen, Xu Ke-Yang

机构信息

Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, China.

Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.

出版信息

Front Cell Infect Microbiol. 2025 May 1;15:1545646. doi: 10.3389/fcimb.2025.1545646. eCollection 2025.


DOI:10.3389/fcimb.2025.1545646
PMID:40375898
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12078339/
Abstract

With the development of artificial intelligence(AI) in computer science and statistics, it has been further applied to the medical field. These applications include the management of infectious diseases, in which machine learning has created inroads in clinical microbiology, radiology, genomics, and the analysis of electronic health record data. Especially, the role of machine learning in microbiology has gradually become prominent, and it is used in etiological diagnosis, prediction of antibiotic resistance, association between human microbiome characteristics and complex host diseases, prognosis judgment, and prevention and control of infectious diseases. Machine learning in the field of microbiology mainly adopts supervised learning and unsupervised learning, involving algorithms from classification and regression to clustering and dimensionality reduction. This Review explains crucial concepts in machine learning for unfamiliar readers, describes machine learning's current applications in clinical microbiology and infectious diseases, and summarizes important approaches clinicians must be aware of when evaluating research using machine learning.

摘要

随着计算机科学和统计学领域人工智能(AI)的发展,它已进一步应用于医学领域。这些应用包括传染病管理,其中机器学习已在临床微生物学、放射学、基因组学以及电子健康记录数据分析等方面取得进展。特别是,机器学习在微生物学中的作用逐渐凸显,它被用于病因诊断、抗生素耐药性预测、人类微生物组特征与复杂宿主疾病之间的关联、预后判断以及传染病的预防和控制。微生物学领域的机器学习主要采用监督学习和无监督学习,涉及从分类和回归到聚类和降维的算法。本综述为不熟悉的读者解释机器学习中的关键概念,描述机器学习在临床微生物学和传染病中的当前应用,并总结临床医生在评估使用机器学习的研究时必须了解的重要方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3123/12078339/ed7f7c1a3d3f/fcimb-15-1545646-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3123/12078339/ed7f7c1a3d3f/fcimb-15-1545646-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3123/12078339/ed7f7c1a3d3f/fcimb-15-1545646-g001.jpg

相似文献

[1]
The application of machine learning in clinical microbiology and infectious diseases.

Front Cell Infect Microbiol. 2025-5-1

[2]
Machine learning in haematological malignancies.

Lancet Haematol. 2020-7

[3]
[Application of machine learning in clinical predictive models for infectious diseases: a review].

Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2023-6-8

[4]
Evolving Applications of Artificial Intelligence and Machine Learning in Infectious Diseases Testing.

Clin Chem. 2021-12-30

[5]
Nongenerative Artificial Intelligence in Medicine: Advancements and Applications in Supervised and Unsupervised Machine Learning.

Mod Pathol. 2025-3

[6]
Explainable artificial intelligence and machine learning: novel approaches to face infectious diseases challenges.

Ann Med. 2023

[7]
Image analysis and artificial intelligence in infectious disease diagnostics.

Clin Microbiol Infect. 2020-10

[8]
Artificial intelligence in spine care: current applications and future utility.

Eur Spine J. 2022-8

[9]
Role of artificial intelligence in early diagnosis and treatment of infectious diseases.

Infect Dis (Lond). 2025-1

[10]
Machine learning and applications in microbiology.

FEMS Microbiol Rev. 2021-9-8

本文引用的文献

[1]
Clustering and modeling joint-trajectories of HIV/AIDS and tuberculosis mortality rates using bayesian multi-process latent growth model: A global study from 1990 to 2021.

BMC Infect Dis. 2025-3-10

[2]
Using gut microbiome metagenomic hypervariable features for diabetes screening and typing through supervised machine learning.

Microb Genom. 2025-3

[3]
Integrating multi-omics data to reveal the host-microbiota interactome in inflammatory bowel disease.

Gut Microbes. 2025-12

[4]
Dimensionality reduction distills complex evolutionary relationships in seasonal influenza and SARS-CoV-2.

Virus Evol. 2024-11-14

[5]
Predicting Lactobacillus delbrueckii subsp. bulgaricus-Streptococcus thermophilus interactions based on a highly accurate semi-supervised learning method.

Sci China Life Sci. 2025-2

[6]
Random kernel k-nearest neighbors regression.

Front Big Data. 2024-7-1

[7]
Discovery of antimicrobial peptides in the global microbiome with machine learning.

Cell. 2024-7-11

[8]
A compendium of multi-omics data illuminating host responses to lethal human virus infections.

Sci Data. 2024-4-2

[9]
K-Means Clustering Identifies Diverse Clinical Phenotypes in COVID-19 Patients: Implications for Mortality Risks and Remdesivir Impact.

Infect Dis Ther. 2024-4

[10]
Evaluation metrics and statistical tests for machine learning.

Sci Rep. 2024-3-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索