Suppr超能文献

基于深度学习重建的冠状动脉计算机断层血管造影术检测支架内再狭窄:一项可行性研究。

Coronary computed tomography angiographic detection of in-stent restenosis via deep learning reconstruction: a feasibility study.

机构信息

Department of Cardiology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan.

Department of Radiology, Fujita Health University, Toyoake, Aichi, Japan.

出版信息

Eur Radiol. 2024 Apr;34(4):2647-2657. doi: 10.1007/s00330-023-10110-7. Epub 2023 Sep 6.

Abstract

OBJECTIVES

Evaluation of in-stent restenosis (ISR), especially for small stents, remains challenging during computed tomography (CT) angiography. We used deep learning reconstruction to quantify stent strut thickness and lumen vessel diameter at the stent and compared it with values obtained using conventional reconstruction strategies.

METHODS

We examined 166 stents in 85 consecutive patients who underwent CT and invasive coronary angiography (ICA) within 3 months of each other from 2019-2021 after percutaneous coronary intervention with coronary stent placement. The presence of ISR was defined as percent diameter stenosis ≥ 50% on ICA. We compared a super-resolution deep learning reconstruction, Precise IQ Engine (PIQE), and a model-based iterative reconstruction, Forward projected model-based Iterative Reconstruction SoluTion (FIRST). All images were reconstructed using PIQE and FIRST and assessed by two blinded cardiovascular radiographers.

RESULTS

PIQE had a larger full width at half maximum of the lumen and smaller strut than FIRST. The image quality score in PIQE was higher than that in FIRST (4.2 ± 1.1 versus 2.7 ± 1.2, p < 0.05). In addition, the specificity and accuracy of ISR detection were better in PIQE than in FIRST (p < 0.05 for both), with particularly pronounced differences for stent diameters < 3.0 mm.

CONCLUSION

PIQE provides superior image quality and diagnostic accuracy for ISR, even with stents measuring < 3.0 mm in diameter.

CLINICAL RELEVANCE STATEMENT

With improvements in the diagnostic accuracy of in-stent stenosis, CT angiography could become a gatekeeper for ICA in post-stenting cases, obviating ICA in many patients after recent stenting with infrequent ISR and allowing non-invasive ISR detection in the late phase.

KEY POINTS

• Despite CT technology advancements, evaluating in-stent stenosis severity, especially in small-diameter stents, remains challenging. • Compared with conventional methods, the Precise IQ Engine uses deep learning to improve spatial resolution. • Improved diagnostic accuracy of CT angiography helps avoid invasive coronary angiography after coronary artery stenting.

摘要

目的

在计算机断层扫描(CT)血管造影中,评估支架内再狭窄(ISR),尤其是对于小支架,仍然具有挑战性。我们使用深度学习重建来量化支架的支架厚度和支架处的管腔血管直径,并将其与使用传统重建策略获得的值进行比较。

方法

我们检查了 2019 年至 2021 年期间,在经皮冠状动脉介入治疗后 3 个月内,85 例连续患者的 166 个支架,这些患者在 CT 和侵入性冠状动脉造影(ICA)之间进行了检查。ICA 上定义为直径狭窄百分比≥50%的 ISR。我们比较了超分辨率深度学习重建 Precise IQ Engine(PIQE)和基于模型的迭代重建 Forward projected model-based Iterative Reconstruction SoluTion(FIRST)。所有图像均使用 PIQE 和 FIRST 进行重建,并由两名盲法心血管放射科医生进行评估。

结果

PIQE 的管腔全宽最大值和支架厚度均大于 FIRST。PIQE 的图像质量评分高于 FIRST(4.2±1.1 与 2.7±1.2,p<0.05)。此外,PIQE 检测 ISR 的特异性和准确性均优于 FIRST(p<0.05 均),特别是对于直径<3.0mm 的支架差异更为明显。

结论

PIQE 提供了更好的图像质量和 ISR 的诊断准确性,即使是直径<3.0mm 的支架也是如此。

临床相关性声明

随着 ISR 诊断准确性的提高,CT 血管造影术可能成为支架置入术后 ICA 的守门员,避免了许多最近支架置入后 ISR 不频繁的患者进行 ICA,并允许在晚期进行非侵入性 ISR 检测。

要点

  1. 尽管 CT 技术取得了进步,但评估支架内狭窄的严重程度,特别是在小直径支架中,仍然具有挑战性。

  2. 与传统方法相比,Precise IQ Engine 使用深度学习来提高空间分辨率。

  3. CT 血管造影术诊断准确性的提高有助于避免经皮冠状动脉介入治疗后的冠状动脉造影。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验