Tatsugami Fuminari, Higaki Toru, Sakane Hiroaki, Nakamura Yuko, Iida Makoto, Baba Yasutaka, Fujioka Chikako, Senoo Atsuhiro, Kitagawa Toshiro, Yamamoto Hideya, Kihara Yasuki, Awai Kazuo
1 Department of Diagnostic Radiology, Hiroshima University , Hiroshima, Japan.
2 Department of Radiology, Hiroshima University , Hiroshima, Japan.
Br J Radiol. 2018 Feb;91(1082):20170598. doi: 10.1259/bjr.20170598. Epub 2017 Oct 27.
The purpose of our study was to compare the diagnostic performance of coronary CT angiography (CTA) subjected to model-based iterative reconstruction (IR) or hybrid IR to rule out coronary in-stent restenosis.
We enrolled 16 patients who harboured 22 coronary stents. They underwent coronary CTA on a 320-slice CT scanner. The images were reconstructed with hybrid IR (AIDR 3D) and model-based IR (FIRST) algorithms. We calculated the stent lumen attenuation increase ratio and measured the visible stent lumen diameter. Two blinded observers visually graded the likelihood of in-stent restenosis (lesions ≥ 50%) on hybrid IR and FIRST images.
The stent lumen attenuation increase ratio on FIRST- was lower than on AIDR 3D images (0.20 vs 0.32). The ratio of the visible- compared to the true stent lumen diameter was higher on FIRST- than AIDR 3D images (52.5 vs 47.5%). Invasive coronary angiography identified five stents (22.7%) with significant in-stent restenosis. The use of FIRST improved the sensitivity (60 vs 100%), positive (75.0 vs 83.3%) and negative predictive value (88.9 vs 100%) and the accuracy (86.4 vs 95.5%) for the detection of in-stent restenosis. Specificity was 94.1% for both reconstruction methods.
The model-based IR algorithm may improve diagnostic performance for the detection of in-stent restenosis. Advances in knowledge: Compared to hybrid IR, the new model-based IR algorithm reduced blooming artefacts and improved the image quality. It can be expected to improve diagnostic performance for the detection of in-stent restenosis on coronary CTA images.
本研究旨在比较基于模型的迭代重建(IR)或混合迭代重建技术在冠状动脉CT血管造影(CTA)中排除冠状动脉支架内再狭窄的诊断性能。
我们纳入了16例植入22枚冠状动脉支架的患者。他们在一台320层CT扫描仪上接受了冠状动脉CTA检查。图像采用混合迭代重建(AIDR 3D)和基于模型的迭代重建(FIRST)算法进行重建。我们计算了支架管腔衰减增加率,并测量了可见支架管腔直径。两名盲法观察者对混合迭代重建和FIRST图像上支架内再狭窄(病变≥50%)的可能性进行视觉分级。
FIRST图像上的支架管腔衰减增加率低于AIDR 3D图像(0.20对0.32)。FIRST图像上可见支架管腔直径与真实支架管腔直径的比值高于AIDR 3D图像(52.5%对47.5%)。有创冠状动脉造影显示5枚支架(22.7%)存在显著的支架内再狭窄。使用FIRST提高了检测支架内再狭窄的敏感性(60%对100%)、阳性预测值(75.0%对83.3%)和阴性预测值(88.9%对100%)以及准确性(86.4%对95.5%)。两种重建方法的特异性均为94.1%。
基于模型的迭代重建算法可能会提高检测支架内再狭窄的诊断性能。知识进展:与混合迭代重建相比,新的基于模型的迭代重建算法减少了伪影并提高了图像质量。预计它可以提高冠状动脉CTA图像上检测支架内再狭窄的诊断性能。