Suppr超能文献

基于模型的迭代重建技术在冠状动脉CT血管造影中诊断支架内再狭窄的准确性:初步经验

Diagnostic accuracy of in-stent restenosis using model-based iterative reconstruction at coronary CT angiography: initial experience.

作者信息

Tatsugami Fuminari, Higaki Toru, Sakane Hiroaki, Nakamura Yuko, Iida Makoto, Baba Yasutaka, Fujioka Chikako, Senoo Atsuhiro, Kitagawa Toshiro, Yamamoto Hideya, Kihara Yasuki, Awai Kazuo

机构信息

1 Department of Diagnostic Radiology, Hiroshima University , Hiroshima, Japan.

2 Department of Radiology, Hiroshima University , Hiroshima, Japan.

出版信息

Br J Radiol. 2018 Feb;91(1082):20170598. doi: 10.1259/bjr.20170598. Epub 2017 Oct 27.

Abstract

OBJECTIVE

The purpose of our study was to compare the diagnostic performance of coronary CT angiography (CTA) subjected to model-based iterative reconstruction (IR) or hybrid IR to rule out coronary in-stent restenosis.

METHODS

We enrolled 16 patients who harboured 22 coronary stents. They underwent coronary CTA on a 320-slice CT scanner. The images were reconstructed with hybrid IR (AIDR 3D) and model-based IR (FIRST) algorithms. We calculated the stent lumen attenuation increase ratio and measured the visible stent lumen diameter. Two blinded observers visually graded the likelihood of in-stent restenosis (lesions ≥ 50%) on hybrid IR and FIRST images.

RESULTS

The stent lumen attenuation increase ratio on FIRST- was lower than on AIDR 3D images (0.20 vs 0.32). The ratio of the visible- compared to the true stent lumen diameter was higher on FIRST- than AIDR 3D images (52.5 vs 47.5%). Invasive coronary angiography identified five stents (22.7%) with significant in-stent restenosis. The use of FIRST improved the sensitivity (60 vs 100%), positive (75.0 vs 83.3%) and negative predictive value (88.9 vs 100%) and the accuracy (86.4 vs 95.5%) for the detection of in-stent restenosis. Specificity was 94.1% for both reconstruction methods.

CONCLUSION

The model-based IR algorithm may improve diagnostic performance for the detection of in-stent restenosis. Advances in knowledge: Compared to hybrid IR, the new model-based IR algorithm reduced blooming artefacts and improved the image quality. It can be expected to improve diagnostic performance for the detection of in-stent restenosis on coronary CTA images.

摘要

目的

本研究旨在比较基于模型的迭代重建(IR)或混合迭代重建技术在冠状动脉CT血管造影(CTA)中排除冠状动脉支架内再狭窄的诊断性能。

方法

我们纳入了16例植入22枚冠状动脉支架的患者。他们在一台320层CT扫描仪上接受了冠状动脉CTA检查。图像采用混合迭代重建(AIDR 3D)和基于模型的迭代重建(FIRST)算法进行重建。我们计算了支架管腔衰减增加率,并测量了可见支架管腔直径。两名盲法观察者对混合迭代重建和FIRST图像上支架内再狭窄(病变≥50%)的可能性进行视觉分级。

结果

FIRST图像上的支架管腔衰减增加率低于AIDR 3D图像(0.20对0.32)。FIRST图像上可见支架管腔直径与真实支架管腔直径的比值高于AIDR 3D图像(52.5%对47.5%)。有创冠状动脉造影显示5枚支架(22.7%)存在显著的支架内再狭窄。使用FIRST提高了检测支架内再狭窄的敏感性(60%对100%)、阳性预测值(75.0%对83.3%)和阴性预测值(88.9%对100%)以及准确性(86.4%对95.5%)。两种重建方法的特异性均为94.1%。

结论

基于模型的迭代重建算法可能会提高检测支架内再狭窄的诊断性能。知识进展:与混合迭代重建相比,新的基于模型的迭代重建算法减少了伪影并提高了图像质量。预计它可以提高冠状动脉CTA图像上检测支架内再狭窄的诊断性能。

相似文献

2
Coronary Artery Stent Evaluation with Model-based Iterative Reconstruction at Coronary CT Angiography.
Acad Radiol. 2017 Aug;24(8):975-981. doi: 10.1016/j.acra.2016.12.020. Epub 2017 Feb 14.
3
Low-dose dual-source CT angiography with iterative reconstruction for coronary artery stent evaluation.
JACC Cardiovasc Imaging. 2013 Apr;6(4):458-65. doi: 10.1016/j.jcmg.2012.10.023. Epub 2013 Mar 14.
4
Stent evaluation in low-dose coronary CT angiography: effect of different iterative reconstruction settings.
J Cardiovasc Comput Tomogr. 2013 Sep-Oct;7(5):319-25. doi: 10.1016/j.jcct.2013.08.012. Epub 2013 Sep 26.
9
Assessment of coronary in-stent restenosis: value of subtraction coronary computed tomography angiography.
Int J Cardiovasc Imaging. 2016 Apr;32(4):661-70. doi: 10.1007/s10554-015-0826-4. Epub 2015 Dec 12.
10
Value of knowledge-based iterative model reconstruction in low-kV 256-slice coronary CT angiography.
J Cardiovasc Comput Tomogr. 2014 Mar-Apr;8(2):115-23. doi: 10.1016/j.jcct.2013.12.010. Epub 2014 Jan 12.

引用本文的文献

1
[Coronary CT Angiography-Based Assessment of Coronary in-Stent Restenosis: A Journey through Past and Present Trends].
J Korean Soc Radiol. 2024 Mar;85(2):258-269. doi: 10.3348/jksr.2024.0026. Epub 2024 Mar 27.
2
Coronary computed tomography angiographic detection of in-stent restenosis via deep learning reconstruction: a feasibility study.
Eur Radiol. 2024 Apr;34(4):2647-2657. doi: 10.1007/s00330-023-10110-7. Epub 2023 Sep 6.
3
SCCT 2021 Expert Consensus Document on Coronary Computed Tomographic Angiography: A Report of the Society of Cardiovascular Computed Tomography.
J Cardiovasc Comput Tomogr. 2021 May-Jun;15(3):192-217. doi: 10.1016/j.jcct.2020.11.001. Epub 2020 Nov 20.
4
Personalized 3D printed coronary models in coronary stenting.
Quant Imaging Med Surg. 2019 Aug;9(8):1356-1367. doi: 10.21037/qims.2019.06.21.

本文引用的文献

1
Coronary Artery Stent Evaluation with Model-based Iterative Reconstruction at Coronary CT Angiography.
Acad Radiol. 2017 Aug;24(8):975-981. doi: 10.1016/j.acra.2016.12.020. Epub 2017 Feb 14.
2
Lung cancer screening with ultra-low dose CT using full iterative reconstruction.
Jpn J Radiol. 2017 Apr;35(4):179-189. doi: 10.1007/s11604-017-0618-y. Epub 2017 Feb 14.
3
State of the Art: Iterative CT Reconstruction Techniques.
Radiology. 2015 Aug;276(2):339-57. doi: 10.1148/radiol.2015132766.
5
The optimal dose reduction level using iterative reconstruction with prospective ECG-triggered coronary CTA using 256-slice MDCT.
Eur J Radiol. 2012 Dec;81(12):3905-11. doi: 10.1016/j.ejrad.2012.06.022. Epub 2012 Oct 1.
6
AdaptiveIterative Dose Reduction in coronary CT angiography using 320-row CT: assessment of radiation dose reduction and image quality.
J Cardiovasc Comput Tomogr. 2012 Sep-Oct;6(5):318-24. doi: 10.1016/j.jcct.2012.02.009. Epub 2012 Aug 16.
8
New iterative reconstruction techniques for cardiovascular computed tomography: how do they work, and what are the advantages and disadvantages?
J Cardiovasc Comput Tomogr. 2011 Sep-Oct;5(5):286-92. doi: 10.1016/j.jcct.2011.07.001. Epub 2011 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验