Suppr超能文献

使用第二代深度学习重建技术改善心肌合成细胞外容积的量化

Improvement of Quantification of Myocardial Synthetic ECV with Second-Generation Deep Learning Reconstruction.

作者信息

Morioka Tsubasa, Kato Shingo, Onoma Ayano, Izumi Toshiharu, Sakano Tomokazu, Ishikawa Eiji, Sawamura Shungo, Yasuda Naofumi, Nagase Hiroaki, Utsunomiya Daisuke

机构信息

Department of Radiology, Yokohama City University Hospital, Yokohama 236-0004, Kanagawa, Japan.

Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan.

出版信息

J Cardiovasc Dev Dis. 2024 Oct 2;11(10):304. doi: 10.3390/jcdd11100304.

Abstract

BACKGROUND

The utility of synthetic ECV, which does not require hematocrit values, has been reported; however, high-quality CT images are essential for accurate quantification. Second-generation Deep Learning Reconstruction (DLR) enables low-noise and high-resolution cardiac CT images. The aim of this study is to compare the differences among four reconstruction methods (hybrid iterative reconstruction (HIR), model-based iterative reconstruction (MBIR), DLR, and second-generation DLR) in the quantification of synthetic ECV.

METHODS

We retrospectively analyzed 80 patients who underwent cardiac CT scans, including late contrast-enhanced CT (derivation cohort: = 40, age 71 ± 12 years, 24 males; validation cohort: = 40, age 67 ± 11 years, 25 males). In the derivation cohort, a linear regression analysis was performed between the hematocrit values from blood tests and the CT values of the right atrial blood pool on non-contrast CT. In the validation cohort, synthetic hematocrit values were calculated using the linear regression equation and the right atrial CT values from non-contrast CT. The correlation and mean difference between synthetic ECV and laboratory ECV calculated from actual blood tests were assessed.

RESULTS

Synthetic ECV and laboratory ECV showed a high correlation across all four reconstruction methods (R ≥ 0.95, < 0.001). The bias and limit of agreement (LOA) in the Bland-Altman plot were lowest with the second-generation DLR (hybrid IR: bias = -0.21, LOA: 3.16; MBIR: bias = -0.79, LOA: 2.81; DLR: bias = -1.87, LOA: 2.90; second-generation DLR: bias = -0.20, LOA: 2.35).

CONCLUSIONS

Synthetic ECV using second-generation DLR demonstrated the lowest bias and LOA compared to laboratory ECV among the four reconstruction methods, suggesting that second-generation DLR enables more accurate quantification.

摘要

背景

已报道了无需血细胞比容值的合成细胞外容积(ECV)的效用;然而,高质量的CT图像对于准确量化至关重要。第二代深度学习重建(DLR)可实现低噪声和高分辨率的心脏CT图像。本研究的目的是比较四种重建方法(混合迭代重建(HIR)、基于模型的迭代重建(MBIR)、DLR和第二代DLR)在合成ECV量化方面的差异。

方法

我们回顾性分析了80例行心脏CT扫描的患者,包括延迟对比增强CT(推导队列:n = 40,年龄71±12岁,男性24例;验证队列:n = 40,年龄67±11岁,男性25例)。在推导队列中,对血液检测的血细胞比容值与非增强CT上右心房血池的CT值进行线性回归分析。在验证队列中,使用线性回归方程和非增强CT上的右心房CT值计算合成血细胞比容值。评估合成ECV与通过实际血液检测计算得到的实验室ECV之间的相关性和平均差异。

结果

在所有四种重建方法中,合成ECV与实验室ECV均显示出高度相关性(R≥0.95,P<0.001)。第二代DLR在Bland-Altman图中的偏差和一致性界限(LOA)最低(混合IR:偏差=-0.21,LOA:3.16;MBIR:偏差=-0.79,LOA:2.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b741/11514731/e3596e6b1f7d/jcdd-11-00304-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验