European Commission, Joint Research Centre, Ispra, Italy.
Environ Monit Assess. 2023 Sep 6;195(10):1153. doi: 10.1007/s10661-023-11609-8.
Predicting crop yields, and especially anomalously low yields, is of special importance for food insecure countries. In this study, we investigate a flexible deep learning approach to forecast crop yield at the provincial administrative level based on deep 1D and 2D convolutional neural networks using limited data. This approach meets the operational requirements-public and global records of satellite data in an application ready format with near real time updates-and can be transferred to any country with reliable yield statistics. Three-dimensional histograms of normalized difference vegetation index (NDVI) and climate data are used as input to the 2D model, while simple administrative-level time series averages of NDVI and climate data to the 1D model. The best model architecture is automatically identified during efficient and extensive hyperparameter optimization. To demonstrate the relevance of this approach, we hindcast (2002-2018) the yields of Algeria's three main crops (barley, durum and soft wheat) and contrast the model's performance with machine learning algorithms and conventional benchmark models used in a previous study. Simple benchmarks such as peak NDVI remained challenging to outperform while machine learning models were superior to deep learning models for all forecasting months and all tested crops. We attribute the poor performance of deep learning to the small size of the dataset available.
预测作物产量,特别是异常低的产量,对粮食不安全的国家尤为重要。在这项研究中,我们研究了一种灵活的深度学习方法,该方法基于深度 1D 和 2D 卷积神经网络,使用有限的数据,在省级行政水平上预测作物产量。这种方法满足了操作要求-以应用就绪格式公开和提供卫星数据的公共和全球记录,并具有近乎实时的更新-并且可以转移到任何具有可靠产量统计数据的国家。归一化差异植被指数(NDVI)和气候数据的三维直方图被用作 2D 模型的输入,而 NDVI 和气候数据的简单行政级别时间序列平均值则被用作 1D 模型的输入。在高效和广泛的超参数优化过程中,自动确定最佳模型架构。为了证明这种方法的相关性,我们对阿尔及利亚的三种主要作物(大麦、杜伦和软小麦)进行了回溯预测(2002-2018 年),并将模型的性能与机器学习算法和之前研究中使用的传统基准模型进行了对比。虽然峰值 NDVI 等简单基准仍然难以超越,但对于所有预测月份和所有测试的作物,机器学习模型都优于深度学习模型。我们将深度学习的性能不佳归因于可用数据集的规模较小。