Suppr超能文献

用于在数据有限的情况下进行稳健污染物预测的同步节拍法。

syN-BEATS for robust pollutant forecasting in data-limited context.

作者信息

Berman Josef, Pinhasov Ben, Tshuva Moshe, Aperstein Yehudit

机构信息

Intelligent Systems, Afeka College of Engineering, Tel Aviv, Israel.

出版信息

Environ Monit Assess. 2024 Oct 2;196(11):1002. doi: 10.1007/s10661-024-13164-2.

Abstract

This research introduces syN-BEATS, a novel ensemble deep learning model tailored for effective pollutant forecasting under conditions of limited data availability. Based on the N-BEATS architecture, syN-BEATS integrates various configurations with differing numbers of stacks and blocks, effectively combining weak and strong learning approaches. Our experiments show that syN-BEATS outperforms standard models, especially when using Bayesian optimization to fine-tune ensemble weights. The model consistently achieves low relative root mean square errors, proving its capacity for precise pollutant forecasting despite data constraints. A key aspect of this study is the use of data from only one meteorological and one air quality monitoring station per region, simulating environments with restricted monitoring capabilities. By applying this approach in regions with diverse climates and air quality levels, we thoroughly assess the model's flexibility and resilience under different environmental conditions. The results highlight syN-BEATS' ability to support the development of effective health alert systems that can detect specific airborne pollutants, even in areas with limited monitoring infrastructure. This advancement is crucial for enhancing environmental monitoring and public health management in under-resourced areas.

摘要

本研究介绍了syN-BEATS,这是一种新颖的集成深度学习模型,专为在数据可用性有限的条件下进行有效的污染物预测而量身定制。基于N-BEATS架构,syN-BEATS整合了具有不同堆栈和块数量的各种配置,有效地结合了弱学习方法和强学习方法。我们的实验表明,syN-BEATS优于标准模型,尤其是在使用贝叶斯优化来微调集成权重时。该模型始终实现较低的相对均方根误差,证明了其在数据受限情况下精确预测污染物的能力。本研究的一个关键方面是每个区域仅使用一个气象站和一个空气质量监测站的数据,模拟监测能力受限的环境。通过在气候和空气质量水平各异的区域应用这种方法,我们全面评估了该模型在不同环境条件下的灵活性和弹性。结果突出了syN-BEATS支持开发有效健康警报系统的能力,该系统能够检测特定的空气传播污染物,即使在监测基础设施有限的地区也是如此。这一进展对于加强资源匮乏地区的环境监测和公共卫生管理至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae3/11447109/972ef96607ef/10661_2024_13164_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验