Suppr超能文献

熵驱动的液-液相分离转变为聚合物胶束

Entropy-Driven Liquid-Liquid Phase Separation Transition to Polymeric Micelles.

作者信息

Rasoulianboroujeni Morteza, de Villiers Melgardt M, Kwon Glen S

机构信息

Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, United States.

出版信息

J Phys Chem B. 2023 Sep 21;127(37):7925-7936. doi: 10.1021/acs.jpcb.3c03854. Epub 2023 Sep 6.

Abstract

In recent years, liquid-liquid phase separation (LLPS) has been recognized to act as a precursor to self-assembly in amphiphilic systems. In this study, we propose the use of entropy-driven LLPS to obtain a tunable precursor for polymeric micelle formation. In this new approach, an oligomer is utilized as a nonselective solvent for the block copolymer, allowing for the tuning of entropy and subsequent LLPS. A comprehensive model was developed using mean-field lattice theory to predict the conditions under which LLPS and micellization occur. The degree of polymerization of the solvent was found to have a significant impact on the phase behavior of the system, outweighing enthalpic contributions such as the interaction between the blocks of the copolymer and the solvent. Our model predicts that using a solvent with a degree of polymerization equal to or greater than 5 for a copolymer such as PEG--PLA will result in LLPS prior to complete micellization, regardless of the values of interaction parameters. It also suggests that phase-separated liquid and polymeric micelles can co-exist in such a mixture. We confirmed our model predictions using dynamic light scattering and phase microscopy when PEG200 was used as the solvent. Micellization for PEG--PLA/PEG200/water mixture occurred at 10-12% w/w water content, consistent with the model predictions. Furthermore, the LLPS-to-micelle transition was shown to be reversible by changing the temperature or water content, indicating that the phase-separated liquid may be in thermodynamic equilibrium with polymeric micelles.

摘要

近年来,液-液相分离(LLPS)已被认为是两亲体系中自组装的前驱体。在本研究中,我们提出利用熵驱动的液-液相分离来获得用于形成聚合物胶束的可调谐前驱体。在这种新方法中,一种低聚物被用作嵌段共聚物的非选择性溶剂,从而实现熵的调节以及随后的液-液相分离。利用平均场晶格理论建立了一个综合模型,以预测发生液-液相分离和胶束化的条件。发现溶剂的聚合度对体系的相行为有显著影响,其影响超过了诸如共聚物嵌段与溶剂之间相互作用等焓贡献。我们的模型预测,对于聚乙二醇-聚乳酸(PEG-PLA)等共聚物,使用聚合度等于或大于5的溶剂将导致在完全胶束化之前发生液-液相分离,而与相互作用参数的值无关。该模型还表明,相分离的液体和聚合物胶束可以在这种混合物中共存。当使用聚乙二醇200(PEG200)作为溶剂时,我们通过动态光散射和相显微镜证实了模型预测。聚乙二醇-聚乳酸/聚乙二醇200/水混合物在水含量为10 - 12%(质量/质量)时发生胶束化,与模型预测一致。此外,通过改变温度或水含量,液-液相分离到胶束的转变被证明是可逆的,这表明相分离的液体可能与聚合物胶束处于热力学平衡状态。

相似文献

1
Entropy-Driven Liquid-Liquid Phase Separation Transition to Polymeric Micelles.
J Phys Chem B. 2023 Sep 21;127(37):7925-7936. doi: 10.1021/acs.jpcb.3c03854. Epub 2023 Sep 6.
2
"Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.
J Colloid Interface Sci. 2015 Jul 1;449:416-27. doi: 10.1016/j.jcis.2014.12.077. Epub 2014 Dec 31.
3
Liquid-liquid phase separation of polymeric microdomains with tunable inner morphology: Mechanistic insights and applications.
J Colloid Interface Sci. 2019 Nov 15;556:74-82. doi: 10.1016/j.jcis.2019.08.015. Epub 2019 Aug 6.
5
Liquid-liquid phase separated microdomains of an amphiphilic graft copolymer in a surfactant-rich medium.
J Colloid Interface Sci. 2022 Jun;615:807-820. doi: 10.1016/j.jcis.2022.02.020. Epub 2022 Feb 8.
9
Effects of Doxorubicin on the Liquid-Liquid Phase Change Properties of Elastin-Like Polypeptides.
Biophys J. 2018 Oct 16;115(8):1431-1444. doi: 10.1016/j.bpj.2018.09.006. Epub 2018 Sep 15.
10
Kinetics of Micellization and Liquid-Liquid Phase Separation in Dilute Block Copolymer Solutions.
Polymers (Basel). 2023 Jan 31;15(3):708. doi: 10.3390/polym15030708.

引用本文的文献

1
Smart coacervate microdroplets: biomimetic design, material innovations, and emerging applications in biomacromolecule delivery.
Bioact Mater. 2025 Jun 10;52:244-270. doi: 10.1016/j.bioactmat.2025.06.016. eCollection 2025 Oct.
3
Crystallization of supersaturated PEG-b-PLA for the production of drug-loaded polymeric micelles.
J Control Release. 2025 Apr 10;380:457-468. doi: 10.1016/j.jconrel.2025.02.009. Epub 2025 Feb 11.

本文引用的文献

1
Production of paclitaxel-loaded PEG-b-PLA micelles using PEG for drug loading and freeze-drying.
J Control Release. 2022 Oct;350:350-359. doi: 10.1016/j.jconrel.2022.08.032. Epub 2022 Aug 26.
2
Liposome composition in drug delivery design, synthesis, characterization, and clinical application.
Adv Drug Deliv Rev. 2021 Sep;176:113851. doi: 10.1016/j.addr.2021.113851. Epub 2021 Jul 2.
3
Tailoring of Peptide Vesicles: A Bottom-Up Chemical Approach.
Acc Chem Res. 2021 Apr 20;54(8):1934-1949. doi: 10.1021/acs.accounts.0c00690. Epub 2021 Apr 6.
4
Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.
J Control Release. 2021 Apr 10;332:312-336. doi: 10.1016/j.jconrel.2021.02.031. Epub 2021 Feb 27.
5
6
Liquid-liquid phase separation during amphiphilic self-assembly.
Nat Chem. 2019 Apr;11(4):320-328. doi: 10.1038/s41557-019-0210-4. Epub 2019 Feb 18.
7
Polymeric micelles for drug delivery.
Curr Pharm Des. 2006;12(36):4669-84. doi: 10.2174/138161206779026245.
8
The effects of Pluronic block copolymers on the aggregation state of nystatin.
J Control Release. 2004 Mar 5;95(2):161-71. doi: 10.1016/j.jconrel.2003.11.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验