The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
Int J Biol Macromol. 2023 Dec 31;253(Pt 1):126721. doi: 10.1016/j.ijbiomac.2023.126721. Epub 2023 Sep 9.
The healing of large bone defects remains a significant challenge in clinical practice. Accelerating both angiogenesis and osteogenesis can promote effective bone healing. In the natural healing process, angiogenesis precedes osteogenesis, providing a blood supply that supports the subsequent progression of osteogenesis. Developing a biomimetic scaffold that mimics the in vivo environment and promotes the proper sequence of vascularization followed by ossification is crucial for successful bone regeneration. In this study, a novel injectable dual-drug programmed releasing chitosan nanofibrous microsphere-based poly(D, l-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(D,l-lactide-co-glycolide) (PLGA-PEG-PLGA) hydrogel is fabricated by incorporating vascular endothelial growth factor (VEGF) and microspheres loaded with dental pulp stem cells-derived exosomes (DPSCs-Exo). Rapid release of VEGF promotes the swift initiation of angiogenesis, while DPSCs-Exo release ensures persistent osteogenesis. Our results demonstrate that chitosan microsphere-based PLGA-PEG-PLGA hydrogel significantly promotes angiogenesis in human umbilical vascular endothelial cells and enhances the osteogenic differentiation of pre-osteoblasts. Furthermore, in vivo transplantation of this injectable chitosan microsphere-based PLGA-PEG-PLGA hydrogel into calvarial bone defects markedly promotes bone formation. Overall, our study provides a promising approach for improving bone regeneration by temporally replicating the behavior of angiogenesis and osteogenesis.
在临床实践中,治愈大骨缺损仍然是一个重大挑战。加速血管生成和成骨作用可以促进有效的骨愈合。在自然愈合过程中,血管生成先于成骨作用,提供支持随后成骨作用进展的血液供应。开发一种仿生支架,模拟体内环境并促进血管化随后成骨的适当顺序,对于成功的骨再生至关重要。在这项研究中,通过将血管内皮生长因子 (VEGF) 和负载牙髓干细胞衍生外泌体 (DPSCs-Exo) 的微球纳入其中,制备了一种新型可注射双药物程控释放壳聚糖纳米纤维微球/聚(D,L-丙交酯-共-乙交酯)-b-聚(乙二醇)-b-聚(D,L-丙交酯-共-乙交酯)(PLGA-PEG-PLGA)水凝胶。VEGF 的快速释放促进了血管生成的迅速启动,而 DPSCs-Exo 的释放确保了持续的成骨作用。我们的结果表明,壳聚糖微球/PLGA-PEG-PLGA 水凝胶显著促进了人脐静脉内皮细胞的血管生成,并增强了前成骨细胞的成骨分化。此外,将这种可注射的壳聚糖微球/PLGA-PEG-PLGA 水凝胶体内移植到颅骨骨缺损中显著促进了骨形成。总的来说,我们的研究通过时间复制血管生成和成骨作用的行为,为改善骨再生提供了一种有前途的方法。